找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-Dimensional Covariance Matrix Estimation; An Introduction to R Aygul Zagidullina Book 2021 The Author(s), under exclusive licence to S

[復(fù)制鏈接]
查看: 11475|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:03:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱High-Dimensional Covariance Matrix Estimation
副標(biāo)題An Introduction to R
編輯Aygul Zagidullina
視頻videohttp://file.papertrans.cn/427/426566/426566.mp4
概述Presents random matrix theory and covariance matrix estimation under high-dimensional asymptotics.Demonstrates the deficiencies of the standard statistical tools when applied in high dimensions.Encour
叢書名稱SpringerBriefs in Applied Statistics and Econometrics
圖書封面Titlebook: High-Dimensional Covariance Matrix Estimation; An Introduction to R Aygul Zagidullina Book 2021 The Author(s), under exclusive licence to S
描述This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
出版日期Book 2021
關(guān)鍵詞covariance matrix estimation; random matrix theory; high-dimensional asymptotics; high-dimensional cova
版次1
doihttps://doi.org/10.1007/978-3-030-80065-9
isbn_softcover978-3-030-80064-2
isbn_ebook978-3-030-80065-9Series ISSN 2524-4116 Series E-ISSN 2524-4124
issn_series 2524-4116
copyrightThe Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
The information of publication is updating

書目名稱High-Dimensional Covariance Matrix Estimation影響因子(影響力)




書目名稱High-Dimensional Covariance Matrix Estimation影響因子(影響力)學(xué)科排名




書目名稱High-Dimensional Covariance Matrix Estimation網(wǎng)絡(luò)公開度




書目名稱High-Dimensional Covariance Matrix Estimation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱High-Dimensional Covariance Matrix Estimation被引頻次




書目名稱High-Dimensional Covariance Matrix Estimation被引頻次學(xué)科排名




書目名稱High-Dimensional Covariance Matrix Estimation年度引用




書目名稱High-Dimensional Covariance Matrix Estimation年度引用學(xué)科排名




書目名稱High-Dimensional Covariance Matrix Estimation讀者反饋




書目名稱High-Dimensional Covariance Matrix Estimation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:45 | 只看該作者
2524-4116 ard statistical tools when applied in high dimensions.EncourThis book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the tradit
板凳
發(fā)表于 2025-3-22 03:32:45 | 只看該作者
Introduction,m matrix theory perspective. This alternative framework provides powerful tools that enable the analysis of random matrices (and sample covariance matrix, in particular) stemming from the data that researchers and practitioners currently encounter.
地板
發(fā)表于 2025-3-22 06:20:03 | 只看該作者
Book 2021d reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
5#
發(fā)表于 2025-3-22 09:14:18 | 只看該作者
Aygul Zagidullinaience problems. It covers not only common statistical approaches and time series models, including ARMA, SARIMA, VAR, GARCH and state space and Markov switching models for (non)stationary, multivariate and financial time series, but also modern machine learning procedures and challenges for time ser
6#
發(fā)表于 2025-3-22 14:15:32 | 只看該作者
Aygul Zagidullinaience problems. It covers not only common statistical approaches and time series models, including ARMA, SARIMA, VAR, GARCH and state space and Markov switching models for (non)stationary, multivariate and financial time series, but also modern machine learning procedures and challenges for time ser
7#
發(fā)表于 2025-3-22 20:28:04 | 只看該作者
8#
發(fā)表于 2025-3-22 22:00:09 | 只看該作者
9#
發(fā)表于 2025-3-23 03:48:26 | 只看該作者
Aygul Zagidullinay morphological and biochemical changes in most cell compartments (Kerr et al., 1972; Wyllie et al., 1980). The microscopically observed nuclear alterations such as marginatiom and condensation of chromatin and nuclear fragmentation are accompanied by sequential degradation of the DNA, first into fr
10#
發(fā)表于 2025-3-23 07:35:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙州县| 大荔县| 始兴县| 德江县| 永德县| 普安县| 历史| 康保县| 忻城县| 洛川县| 兰西县| 东阿县| 西宁市| 株洲市| 景泰县| 公安县| 区。| 临城县| 安乡县| 革吉县| 沁水县| 勃利县| 神农架林区| 禄丰县| 台安县| 永丰县| 平舆县| 盐津县| 岗巴县| 皮山县| 抚远县| 顺平县| 霍林郭勒市| 京山县| 余江县| 开平市| 修武县| 和平县| 贺州市| 孝感市| 汤原县|