找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-Dimensional Chaotic and Attractor Systems; A Comprehensive Intr Vladimir G. Ivancevic,Tijana T. Ivancevic Book 20071st edition Springe

[復(fù)制鏈接]
查看: 15482|回復(fù): 45
樓主
發(fā)表于 2025-3-21 20:01:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱High-Dimensional Chaotic and Attractor Systems
副標(biāo)題A Comprehensive Intr
編輯Vladimir G. Ivancevic,Tijana T. Ivancevic
視頻videohttp://file.papertrans.cn/427/426565/426565.mp4
概述High-dimensional chaos of real life.Real research – not motivational introduction
叢書名稱Intelligent Systems, Control and Automation: Science and Engineering
圖書封面Titlebook: High-Dimensional Chaotic and Attractor Systems; A Comprehensive Intr Vladimir G. Ivancevic,Tijana T. Ivancevic Book 20071st edition Springe
描述If we try to describe real world in mathematical terms, we will see that real life is very often a high–dimensional chaos. Sometimes, by ‘pushing hard’, we manage to make order out of it; yet sometimes, we need simply to accept our life as it is. To be able to still live successfully, we need tounderstand, predict, and ultimately control this high–dimensional chaotic dynamics of life. This is the main theme of the present book. In our previous book, Geometrical - namics of Complex Systems, Vol. 31 in Springer book series Microprocessor– Based and Intelligent Systems Engineering, we developed the most powerful mathematical machinery to deal with high–dimensional nonlinear dynamics. In the present text, we consider the extreme cases of nonlinear dynamics, the high–dimensional chaotic and other attractor systems. Although they might look as examples of complete disorder – they still represent control systems, with their inputs, outputs, states, feedbacks, and stability. Today, we can see a number of nice books devoted to nonlinear dyn- ics and chaos theory (see our reference list). However, all these books are only undergraduate, introductory texts, that are concerned exclusively with
出版日期Book 20071st edition
關(guān)鍵詞Soliton; Transformation; algorithm; algorithms; chaos; chaos theory; classification; deterministic chaos; me
版次1
doihttps://doi.org/10.1007/978-1-4020-5456-3
isbn_softcover978-90-481-7372-3
isbn_ebook978-1-4020-5456-3Series ISSN 2213-8986 Series E-ISSN 2213-8994
issn_series 2213-8986
copyrightSpringer Science+Business Media B.V. 2007
The information of publication is updating

書目名稱High-Dimensional Chaotic and Attractor Systems影響因子(影響力)




書目名稱High-Dimensional Chaotic and Attractor Systems影響因子(影響力)學(xué)科排名




書目名稱High-Dimensional Chaotic and Attractor Systems網(wǎng)絡(luò)公開度




書目名稱High-Dimensional Chaotic and Attractor Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱High-Dimensional Chaotic and Attractor Systems被引頻次




書目名稱High-Dimensional Chaotic and Attractor Systems被引頻次學(xué)科排名




書目名稱High-Dimensional Chaotic and Attractor Systems年度引用




書目名稱High-Dimensional Chaotic and Attractor Systems年度引用學(xué)科排名




書目名稱High-Dimensional Chaotic and Attractor Systems讀者反饋




書目名稱High-Dimensional Chaotic and Attractor Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:56:32 | 只看該作者
978-90-481-7372-3Springer Science+Business Media B.V. 2007
地板
發(fā)表于 2025-3-22 04:56:13 | 只看該作者
High-Dimensional Chaotic and Attractor Systems978-1-4020-5456-3Series ISSN 2213-8986 Series E-ISSN 2213-8994
5#
發(fā)表于 2025-3-22 12:41:20 | 只看該作者
Introduction to Attractors and Chaos,ine the present state only partially, due to noise, or other external circumstances beyond our control. For a stochastic system, the present state relects the past initial conditions plus the particular realization of the noise encountered along the way. So, in view of classical science, we have either deterministic or stochastic systems.
6#
發(fā)表于 2025-3-22 13:04:25 | 只看該作者
Josephson Junctions and Quantum Engineering,ey can exhibit chaotic behavior, both as single junctions (which have macroscopic dynamics analogous to those of the forced nonlinear oscillators), and as arrays (or ladders) of junctions, which can show high– dimensional chaos.
7#
發(fā)表于 2025-3-22 17:04:57 | 只看該作者
8#
發(fā)表于 2025-3-22 22:33:53 | 只看該作者
9#
發(fā)表于 2025-3-23 02:19:17 | 只看該作者
,3–Body Problem and Chaos Control,This Chapter addresses fundamental mechanical . (namely classical mechanics of chaos in the Solar system), as well as the basic techniques for . (mainly, the so–called OGY–control).
10#
發(fā)表于 2025-3-23 07:00:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叙永县| 连山| 仪征市| 韩城市| 县级市| 纳雍县| 龙南县| 合水县| 六盘水市| 怀集县| 桦川县| 绥化市| 衡南县| 喀喇沁旗| 敖汉旗| 四子王旗| 东山县| 卢龙县| 保康县| 佳木斯市| 长顺县| 鄂尔多斯市| 永靖县| 九龙城区| 天峻县| 饶平县| 永善县| 察雅县| 武义县| 甘孜县| 体育| 卓资县| 大埔县| 莆田市| 温宿县| 乐清市| 安阳县| 惠来县| 鲁山县| 密山市| 鸡西市|