找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High Performance Computing; Second Latin America Carla Osthoff,Philippe Olivier Alexandre Navaux,Pe Conference proceedings 2015 Springer In

[復(fù)制鏈接]
樓主: Autopsy
31#
發(fā)表于 2025-3-26 21:09:13 | 只看該作者
Lucía Marroig,Camila Riverón,Sergio Nesmachnow,Esteban Mocskosptgründe für die schnelle Ausführung der einzelnen Funktionen ist die Assemblersprache, deren Ausführungszeit wesentlich kürzer ist als bei h?heren Programmiersprachen wie z. B. BASIC oder Pascal. In Assembler geschriebene Programme müssen genauso wie die h?heren Programmiersprachen in Bin?rcodes um
32#
發(fā)表于 2025-3-27 03:21:08 | 只看該作者
Emmanuell D. Carre?o,Eduardo Roloff,Philippe O. A. Navauxdeveloped by Zinoviev-Zyablov [2], [3], who modified it so that it could also correct many bursts of errors, without sacrificing the random error correcting capability. Unfortunately hitherto available analyses of the algorithm are rather involved — a fact which might have prevented the algorithm fr
33#
發(fā)表于 2025-3-27 07:34:38 | 只看該作者
Carlos E. Gómez,César O. Díaz,César A. Forero,Eduardo Rosales,Harold Castrocompared with those needed using Macsyma (for the same polynomials, on the same computer)..The proposed algorithm includes original contributions : a strategy based on Stickelberger‘s theorem, a particular use of the Norm function. and a systematic use of sequences of squares/non-squares in GF (p).
34#
發(fā)表于 2025-3-27 12:03:19 | 只看該作者
Paula Verghelet,Esteban Mocskosre in arithmetical progression, that is, w.=w.-A and w.=w.+ A with A a function which depends of the number of words of weight three in C.(n,n-k). Furthermore we obtain some relations between s-sum-sets (s odd) and their parameters.
35#
發(fā)表于 2025-3-27 16:16:55 | 只看該作者
compared with those needed using Macsyma (for the same polynomials, on the same computer)..The proposed algorithm includes original contributions : a strategy based on Stickelberger‘s theorem, a particular use of the Norm function. and a systematic use of sequences of squares/non-squares in GF (p).
36#
發(fā)表于 2025-3-27 19:27:13 | 只看該作者
Monica L. Hernandez,Matthieu Dreher,Carlos J. Barrios,Bruno Raffins of the two kinds of computations from the point of view of program semantics is made. The possibility of integrating these two kinds of computations in a unified computational framework is discussed. The use of p-adic arithmetic, as a possible useful interpretation of algebraic expression, is cons
37#
發(fā)表于 2025-3-27 22:31:49 | 只看該作者
Ernesto Dufrechou,Pablo Ezzatti,Enrique S. Quintana-Ortí,Alfredo Remóndeveloped by Zinoviev-Zyablov [2], [3], who modified it so that it could also correct many bursts of errors, without sacrificing the random error correcting capability. Unfortunately hitherto available analyses of the algorithm are rather involved — a fact which might have prevented the algorithm fr
38#
發(fā)表于 2025-3-28 05:33:54 | 只看該作者
Tiago Marques do Nascimento,Rodrigo Weber dos Santos,Marcelo Loboscodeveloped by Zinoviev-Zyablov [2], [3], who modified it so that it could also correct many bursts of errors, without sacrificing the random error correcting capability. Unfortunately hitherto available analyses of the algorithm are rather involved — a fact which might have prevented the algorithm fr
39#
發(fā)表于 2025-3-28 06:52:22 | 只看該作者
40#
發(fā)表于 2025-3-28 12:56:34 | 只看該作者
Frederico Luís Cabral,Carla Osthoff,Diego Brand?o,Mauricio Kischinhevskycompared with those needed using Macsyma (for the same polynomials, on the same computer)..The proposed algorithm includes original contributions : a strategy based on Stickelberger‘s theorem, a particular use of the Norm function. and a systematic use of sequences of squares/non-squares in GF (p).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武隆县| 重庆市| 遂平县| 冷水江市| 漾濞| 满洲里市| 崇左市| 浏阳市| 连南| 伊金霍洛旗| 上饶市| 通城县| 曲阜市| 正蓝旗| 三穗县| 义马市| 涞源县| 象州县| 托克托县| 沅江市| 镶黄旗| 宁明县| 津南区| 河源市| 南城县| 陆良县| 堆龙德庆县| 招远市| 宜章县| 宁化县| 金沙县| 巴青县| 修文县| 沙雅县| 神池县| 临泉县| 宜昌市| 扬中市| 祁门县| 会东县| 乃东县|