找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High Performance Computing; First HPCLATAM - CLC Gonzalo Hernández,Carlos Jaime Barrios Hernández,M Conference proceedings 2014 Springer-Ve

[復(fù)制鏈接]
樓主: Buren
21#
發(fā)表于 2025-3-25 05:19:37 | 只看該作者
22#
發(fā)表于 2025-3-25 11:18:20 | 只看該作者
23#
發(fā)表于 2025-3-25 12:20:21 | 只看該作者
SI-Based Scheduling of Parameter Sweep Experiments on Federated Cloudshere custom virtual machines (VM) are launched in appropriate hosts belonging to different providers to execute scientific experiments and minimize response time. Here, scheduling is performed at three levels. First, at the ., datacenters are selected by their network latencies via three policies –L
24#
發(fā)表于 2025-3-25 16:15:41 | 只看該作者
Distributed Cache Strategies for Machine Learning Classification Tasks over Cluster Computing Resourerative nature where the same data records are processed several times. Data caching becomes key to minimize data transmission through iterations at each node and, thus, contribute to the overall scalability. In this work we propose a two level caching architecture (disk and memory) and benchmark di
25#
發(fā)表于 2025-3-25 20:21:36 | 只看該作者
A Flexible Strategy for Distributed and Parallel Execution of a Monolithic Large-Scale Sequential Apcores architectures and hardly ever are distributed. In this paper we propose a flexible strategy for execution of those legacy codes, identifying main modules involved in the process. Key technologies involved and a tentative implementation are provided allowing to understand challenges and limitat
26#
發(fā)表于 2025-3-26 03:58:18 | 只看該作者
A Model to Calculate Amazon EC2 Instance Performance in Frost Prediction Applicationss can be predicted using Agricultural Monitoring Systems (AMS). AMS provide information to start and stop frosts defense systems and thus reduce economic losses. In recent years, the emergence of infrastructures called Sensor Clouds improved AMS in several aspects such as scalability, reliability, f
27#
發(fā)表于 2025-3-26 04:43:36 | 只看該作者
Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflowsnt of such applications is the prediction of tasks performance. This paper proposes a novel approach that enables the construction models for predicting task’s running-times of data-intensive scientific workflows. Ensemble Machine Learning techniques are used to produce robust combined models with h
28#
發(fā)表于 2025-3-26 10:56:11 | 只看該作者
29#
發(fā)表于 2025-3-26 15:09:04 | 只看該作者
30#
發(fā)表于 2025-3-26 19:24:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐石市| 鲁甸县| 北安市| 邛崃市| 卢湾区| 腾冲县| 沁源县| 大港区| 大厂| 福州市| 兴安盟| 观塘区| 南丹县| 金溪县| 渭源县| 昌乐县| 和平区| 新邵县| 明水县| 普宁市| 农安县| 铅山县| 团风县| 大埔区| 绍兴市| 汝州市| 彰化市| 无极县| 阳城县| 洞头县| 中牟县| 永新县| 华容县| 南康市| 乐陵市| 抚顺县| 呼伦贝尔市| 蒲江县| 江安县| 大冶市| 井冈山市|