找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: High Dimensional Probability VI; The Banff Volume Christian Houdré,David M. Mason,Jon A. Wellner Conference proceedings 2013 Springer Basel

[復(fù)制鏈接]
樓主: incompatible
11#
發(fā)表于 2025-3-23 10:21:13 | 只看該作者
Empirical Quantile CLTs for Time-dependent Data., where . is a closed sub-interval of (0, 1). The process {.. : .} may be chosen from a broad collection of Gaussian processes, compound Poisson processes, stationary independent increment stable processes, and martingales.
12#
發(fā)表于 2025-3-23 17:03:03 | 只看該作者
13#
發(fā)表于 2025-3-23 18:16:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:52:58 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:39 | 只看該作者
16#
發(fā)表于 2025-3-24 07:46:56 | 只看該作者
High Dimensional Probability VI978-3-0348-0490-5Series ISSN 1050-6977 Series E-ISSN 2297-0428
17#
發(fā)表于 2025-3-24 14:13:38 | 只看該作者
Slepian’s Inequality, Modularity and Integral Orderingsariants are imposing to strong regularity conditions. The first part of this paper contains a unified version of Slepian’s inequality under minimal regularity conditions, covering all the variants I know about. It is well known that Slepian’s inequality is closely connected to integral orderings in
18#
發(fā)表于 2025-3-24 15:28:50 | 只看該作者
19#
發(fā)表于 2025-3-24 19:48:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:37 | 只看該作者
Strong Log-concavity is Preserved by Convolutionon of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong logconcavity under convolution has apparently not been investigated previously in the continuous case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平果县| 信阳市| 滦南县| 托克托县| 衡阳市| 宜城市| 林芝县| 垣曲县| 新泰市| 五寨县| 临湘市| 鞍山市| 新竹县| 柳江县| 南宫市| 琼海市| 霍州市| 秦安县| 宁国市| 鹤山市| 应用必备| 祥云县| 乌兰浩特市| 漳浦县| 延庆县| 右玉县| 大足县| 甘泉县| 松原市| 沅江市| 开远市| 于田县| 乌兰察布市| 镶黄旗| 昌图县| 灵宝市| 淄博市| 桑植县| 镇赉县| 福建省| 北宁市|