找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hematopoietic Stem Cell Transplantation; Robert J. Soiffer Book 2008Latest edition Humana Press 2008 blood.bone marrow.cell.cell biology.h

[復(fù)制鏈接]
樓主: industrious
21#
發(fā)表于 2025-3-25 04:18:52 | 只看該作者
22#
發(fā)表于 2025-3-25 08:23:58 | 只看該作者
Philippe Armand MD, PhD,Joseph H. Antin MDels, then the calculated local sensitivity functions are usually similar to each other. An implication of this is that in many cases, by changing a number of input parameters simultaneously according to certain ratios, almost identical simulation results can be obtained for output variables of kinet
23#
發(fā)表于 2025-3-25 15:28:10 | 只看該作者
Catherine J. Wu MDal models. Such methods can help to highlight key model inputs that drive uncertainties in model predictions. Here we describe a range of mathematical tools for sensitivity and uncertainty analysis which may assist in the evaluation of large kinetic mechanisms. Approaches based on local sensitivity,
24#
發(fā)表于 2025-3-25 16:12:54 | 只看該作者
Corey Cutler, and systems biology,?can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the cal
25#
發(fā)表于 2025-3-25 20:51:41 | 只看該作者
Daniel Daniel Weisdorfequations. The unknowns are the stream function . and the vorticity ., leading to the mixed method proposed by Ciarlet and Raviart [1]. A theoretical study of this approach is presented in the book of Girault and Raviart [2].
26#
發(fā)表于 2025-3-26 03:29:27 | 只看該作者
Mitchell E. Horwitz,Nelson Chaoingand supervised classificationtasks. Motivated by the importance of pre-processing approaches in the traditional clusteringcontext, this paper explores to what extent supervised pre-processing steps could help traditional clusteringto obtain better performance on supervised clusteringtasks. This p
27#
發(fā)表于 2025-3-26 07:27:19 | 只看該作者
R. Dey Bimalangshu,Thomas R. SpitzerFor the many featurescase we look at projection methods, distance-based methods, and feature selection. For the many observationscase we mainly consider subsampling. The examples in this paper show that standard classificationmethods should not be blindly applied to Big Data.
28#
發(fā)表于 2025-3-26 11:22:47 | 只看該作者
Amin Alousi,Marcos de Limad in terms of direct inducing of a hierarchy through use of the Baire metric; and (2) based on clusters found, selecting subsets of the original data for further analysis. In this work, we focus on random projectionthat is used for processing high dimensional data. A random projection, outputting a
29#
發(fā)表于 2025-3-26 14:59:44 | 只看該作者
Frédéric Baron,Brenda M. Sandmaieringand supervised classificationtasks. Motivated by the importance of pre-processing approaches in the traditional clusteringcontext, this paper explores to what extent supervised pre-processing steps could help traditional clusteringto obtain better performance on supervised clusteringtasks. This p
30#
發(fā)表于 2025-3-26 20:32:08 | 只看該作者
Carolyn A. Keever-Taylorto seven categories in which six categories have an ordinal scale for representing dosages and one category for missing dosages. We develop a dissimilaritymeasure and cluster the time seriesusing “partitioning around medoids” (PAM). The dissimilaritymeasure is based on assessing the interpretative d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
池州市| 安龙县| 蒙阴县| 普兰店市| 肃北| 伊宁市| 汾阳市| 苗栗县| 砚山县| 江陵县| 夏邑县| 高碑店市| 阿合奇县| 准格尔旗| 晋州市| 塔城市| 唐山市| 兴文县| 常宁市| 新巴尔虎右旗| 玉林市| 金华市| 古交市| 吴江市| 乌鲁木齐县| 阳谷县| 宕昌县| 大同市| 若羌县| 光泽县| 北碚区| 房山区| 新和县| 方山县| 和平区| 沧州市| 黔东| 兴和县| 临城县| 淮南市| 巴南区|