找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hebbian Learning and Negative Feedback Networks; Colin Fyfe Book 2005 Springer-Verlag London 2005 Artificial neural networks.Data mining.E

[復(fù)制鏈接]
查看: 19110|回復(fù): 56
樓主
發(fā)表于 2025-3-21 18:06:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hebbian Learning and Negative Feedback Networks
編輯Colin Fyfe
視頻videohttp://file.papertrans.cn/426/425125/425125.mp4
概述Concentrates on one specific architecture and learning rule which no other book does.State of the art in artificial neural networks which use Hebbian learning.A comparative study of a variety of techn
叢書名稱Advanced Information and Knowledge Processing
圖書封面Titlebook: Hebbian Learning and Negative Feedback Networks;  Colin Fyfe Book 2005 Springer-Verlag London 2005 Artificial neural networks.Data mining.E
描述This book is the outcome of a decade’s research into a speci?c architecture and associated learning mechanism for an arti?cial neural network: the - chitecture involves negative feedback and the learning mechanism is simple Hebbian learning. The research began with my own thesis at the University of Strathclyde, Scotland, under Professor Douglas McGregor which culminated with me being awarded a PhD in 1995 [52], the title of which was “Negative Feedback as an Organising Principle for Arti?cial Neural Networks”. Naturally enough, having established this theme, when I began to sup- vise PhD students of my own, we continued to develop this concept and this book owes much to the research and theses of these students at the Applied Computational Intelligence Research Unit in the University of Paisley. Thus we discuss work from ? Dr. Darryl Charles [24] in Chapter 5. ? Dr. Stephen McGlinchey [127] in Chapter 7. ? Dr. Donald MacDonald [121] in Chapters 6 and 8. ? Dr. Emilio Corchado [29] in Chapter 8. We brie?y discuss one simulation from the thesis of Dr. Mark Girolami [58] in Chapter 6 but do not discuss any of the rest of his thesis since it has already appeared in book form [59]. We a
出版日期Book 2005
關(guān)鍵詞Artificial neural networks; Data mining; Exploratory data analyis; Hebbian learning; Kernel; Machine lear
版次1
doihttps://doi.org/10.1007/b138856
isbn_softcover978-1-84996-945-1
isbn_ebook978-1-84628-118-1Series ISSN 1610-3947 Series E-ISSN 2197-8441
issn_series 1610-3947
copyrightSpringer-Verlag London 2005
The information of publication is updating

書目名稱Hebbian Learning and Negative Feedback Networks影響因子(影響力)




書目名稱Hebbian Learning and Negative Feedback Networks影響因子(影響力)學(xué)科排名




書目名稱Hebbian Learning and Negative Feedback Networks網(wǎng)絡(luò)公開度




書目名稱Hebbian Learning and Negative Feedback Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hebbian Learning and Negative Feedback Networks被引頻次




書目名稱Hebbian Learning and Negative Feedback Networks被引頻次學(xué)科排名




書目名稱Hebbian Learning and Negative Feedback Networks年度引用




書目名稱Hebbian Learning and Negative Feedback Networks年度引用學(xué)科排名




書目名稱Hebbian Learning and Negative Feedback Networks讀者反饋




書目名稱Hebbian Learning and Negative Feedback Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:33:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:09:59 | 只看該作者
地板
發(fā)表于 2025-3-22 04:57:06 | 只看該作者
Multicollinearity and Partial Least Squaressingular (determinant equal to zero) correlation matrix. However, even when we do not reach this extreme, multicollinearity causes problems: because of the redundancy in the variables, we may have an ill-conditioned correlation matrix which is very prone to large variances which may be due to noise in the data set.
5#
發(fā)表于 2025-3-22 09:12:53 | 只看該作者
6#
發(fā)表于 2025-3-22 15:59:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:42:36 | 只看該作者
8#
發(fā)表于 2025-3-23 00:15:22 | 只看該作者
Advanced Information and Knowledge Processinghttp://image.papertrans.cn/h/image/425125.jpg
9#
發(fā)表于 2025-3-23 04:44:46 | 只看該作者
10#
發(fā)表于 2025-3-23 09:12:49 | 只看該作者
Hebbian Learning and Negative Feedback Networks978-1-84628-118-1Series ISSN 1610-3947 Series E-ISSN 2197-8441
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉化市| 卫辉市| 娄烦县| 新乡县| 邹城市| 成安县| 资溪县| 永吉县| 周至县| 青龙| 连平县| 济南市| 永兴县| 朔州市| 大埔县| 怀仁县| 仪征市| 泸水县| 镇江市| 炎陵县| 中西区| 五常市| 军事| 公安县| 吉木萨尔县| 日照市| 涿州市| 太仓市| 拉萨市| 遵义市| 裕民县| 介休市| 勃利县| 桂阳县| 龙南县| 宜君县| 剑河县| 黔西| 靖宇县| 扎赉特旗| 惠来县|