找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Heat Kernels and Dirac Operators; Nicole Berline,Ezra Getzler,Michèle Vergne Textbook 20041st edition Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 06:20:26 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:50 | 只看該作者
23#
發(fā)表于 2025-3-25 13:55:08 | 只看該作者
24#
發(fā)表于 2025-3-25 19:18:55 | 只看該作者
The Equivariant Index Theorem,t ? → . be a Clifford module with Clifford connection; if . acts on . compatibly with the Clifford action and Clifford connection, we call . an equivariant Clifford module. If D is the Dirac operator on . associated to the given data, then D commutes with the action of .; hence, the kernel of D is a
25#
發(fā)表于 2025-3-25 22:42:05 | 只看該作者
Equivariant Differential Forms,sible to localize the calculation of such integrals to the zero set of a vector field on the manifold. In this chapter, we will describe a generalization of this, a localization formula for equivariant differential forms. Only the results of Chapter 1 are a prerequisite to reading this chapter.
26#
發(fā)表于 2025-3-26 03:21:35 | 只看該作者
The Kirillov Formula for the Equivariant Index,pecial case of the fixed point formula for the equivariant index of Chapter 6. However, there is another formula, the universal character formula of Kirillov[73], which presents the character not as a sum over fixed points but as an integral over a certain orbit of . in its coadjoint representation
27#
發(fā)表于 2025-3-26 07:34:45 | 只看該作者
28#
發(fā)表于 2025-3-26 11:19:41 | 只看該作者
The Family Index Theorem,pose in addition that there is a connection Δ. given on ? whose restriction to each bundle ?. is a Clifford connection. Let π.? be the infinite-dimensional bundle over . whose fibre at . is the space Γ(.,?.); let D = (D.| z ∈ .) be the family of Dirac operators acting on the fibres of π.?, construct
29#
發(fā)表于 2025-3-26 14:40:52 | 只看該作者
30#
發(fā)表于 2025-3-26 20:05:03 | 只看該作者
Nicole Berline,Ezra Getzler,Michèle VergneAs we shift our focus from China to India, we notice that local power structure in the latter is closely linked with the panchayati raj, the key political institutions in the village. This does not mean that CSOs and NGOs do not exist in Indian villages.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩义市| 赫章县| 巨野县| 大港区| 嘉荫县| 安徽省| 县级市| 黎城县| 孝感市| 偃师市| 平果县| 黄石市| 宿州市| 巴彦淖尔市| 娄烦县| 奉节县| 邢台市| 璧山县| 五家渠市| 贡觉县| 安康市| 安岳县| 敖汉旗| 沈丘县| 连山| 大田县| 曲靖市| 阜城县| 濮阳市| 广元市| 桂林市| 泽库县| 互助| 土默特左旗| 绵阳市| 自贡市| 嘉祥县| 雅江县| 湖口县| 青阳县| 长兴县|