找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Heat Kernels and Dirac Operators; Nicole Berline,Ezra Getzler,Michèle Vergne Textbook 20041st edition Springer-Verlag Berlin Heidelberg 20

[復(fù)制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 06:20:26 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:50 | 只看該作者
23#
發(fā)表于 2025-3-25 13:55:08 | 只看該作者
24#
發(fā)表于 2025-3-25 19:18:55 | 只看該作者
The Equivariant Index Theorem,t ? → . be a Clifford module with Clifford connection; if . acts on . compatibly with the Clifford action and Clifford connection, we call . an equivariant Clifford module. If D is the Dirac operator on . associated to the given data, then D commutes with the action of .; hence, the kernel of D is a
25#
發(fā)表于 2025-3-25 22:42:05 | 只看該作者
Equivariant Differential Forms,sible to localize the calculation of such integrals to the zero set of a vector field on the manifold. In this chapter, we will describe a generalization of this, a localization formula for equivariant differential forms. Only the results of Chapter 1 are a prerequisite to reading this chapter.
26#
發(fā)表于 2025-3-26 03:21:35 | 只看該作者
The Kirillov Formula for the Equivariant Index,pecial case of the fixed point formula for the equivariant index of Chapter 6. However, there is another formula, the universal character formula of Kirillov[73], which presents the character not as a sum over fixed points but as an integral over a certain orbit of . in its coadjoint representation
27#
發(fā)表于 2025-3-26 07:34:45 | 只看該作者
28#
發(fā)表于 2025-3-26 11:19:41 | 只看該作者
The Family Index Theorem,pose in addition that there is a connection Δ. given on ? whose restriction to each bundle ?. is a Clifford connection. Let π.? be the infinite-dimensional bundle over . whose fibre at . is the space Γ(.,?.); let D = (D.| z ∈ .) be the family of Dirac operators acting on the fibres of π.?, construct
29#
發(fā)表于 2025-3-26 14:40:52 | 只看該作者
30#
發(fā)表于 2025-3-26 20:05:03 | 只看該作者
Nicole Berline,Ezra Getzler,Michèle VergneAs we shift our focus from China to India, we notice that local power structure in the latter is closely linked with the panchayati raj, the key political institutions in the village. This does not mean that CSOs and NGOs do not exist in Indian villages.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平遥县| 滦南县| 宾川县| 京山县| 夏津县| 朝阳县| 柳州市| 石泉县| 金昌市| 化德县| 汝城县| 黄山市| 乌审旗| 青神县| 大洼县| 小金县| 凤城市| 南充市| 凌海市| 衡阳县| 桃园市| 永兴县| 武宣县| 临沧市| 故城县| 淮阳县| 麦盖提县| 凭祥市| 吴旗县| 伊金霍洛旗| 曲水县| 桦南县| 桐庐县| 始兴县| 高安市| 肇庆市| 普安县| 瓦房店市| 无锡市| 义乌市| 民县|