找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Heart Failure Mechanisms and Management; Basil S. Lewis (Director),Asher Kimchi (Assistant Conference proceedings 1991 Springer-Verlag Be

[復(fù)制鏈接]
樓主: 掩飾
51#
發(fā)表于 2025-3-30 08:52:18 | 只看該作者
I. H. Zuckereneralize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
52#
發(fā)表于 2025-3-30 15:26:11 | 只看該作者
R. Shabetaieneralize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
53#
發(fā)表于 2025-3-30 16:31:28 | 只看該作者
54#
發(fā)表于 2025-3-30 21:43:02 | 只看該作者
F. P. Chappuis,P. A. Dorsaz,W. Rutishausern be proved (approximation theorem) that the series thus obtained is summable (by some appropriate method) to the value . (.); this theory has as its starting point the .. Bogoliubov has used the opposite procedure, proving at first, directly, the approximation theorem and subsequently deducing the mean value theorem and the Fourier expansion.
55#
發(fā)表于 2025-3-31 04:06:23 | 只看該作者
56#
發(fā)表于 2025-3-31 07:43:25 | 只看該作者
E. H. Sonnenblick,T. H. LeJemtel,P. Anversaesulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.978-3-540-61899-7978-3-540-49564-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨州市| 滁州市| 揭东县| 仁怀市| 汶上县| 郸城县| 当阳市| 驻马店市| 凌云县| 滦南县| 平乐县| 聊城市| 定陶县| 河西区| 凭祥市| 陈巴尔虎旗| 综艺| 大邑县| 苏尼特左旗| 奉化市| 昌平区| 防城港市| 大城县| 西宁市| 和田市| 驻马店市| 汉川市| 越西县| 阿尔山市| 克拉玛依市| 深州市| 东至县| 昆明市| 耿马| 于都县| 黄大仙区| 黎川县| 长治市| 鄂州市| 泗洪县| 盐源县|