找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Information — New Possibilities; Tony McSéan (Librarian),John Loo (Librarian),Euphe Book 1995 Springer Science+Business Media Dordr

[復制鏈接]
樓主: Traction
11#
發(fā)表于 2025-3-23 11:39:08 | 只看該作者
12#
發(fā)表于 2025-3-23 17:40:18 | 只看該作者
13#
發(fā)表于 2025-3-23 21:52:23 | 只看該作者
Josephine M. Marshall,Lisa M. Belkinparticular, parallel association mining and parallel latent Dirichlet allocation will be presented and their pros and cons analyzed. Some counter-intuitive results will also be presented to stimulate future parallel optimization research.
14#
發(fā)表于 2025-3-23 23:39:02 | 只看該作者
15#
發(fā)表于 2025-3-24 02:53:19 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:23:20 | 只看該作者
Bob Gannas Greedy+Singleton, and prove an approximation ratio .. Though this ratio is strictly smaller than the best known factor for this problem, Greedy+Singleton is simple, fast, and of special interests. Our experiments demonstrates that the algorithm performs well in terms of the solution quality.
18#
發(fā)表于 2025-3-24 17:40:59 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:33 | 只看該作者
Svend Bitsch Christensenendent Cascade Model with Coupons and Valuations (IC-CV). To solve this problem, we propose the PMCA algorithm which can return a .-approximate solution with at least . probability, and runs in . expected time. Further more, during the analysis we provide a method to estimate the non-monotone submodular function.
20#
發(fā)表于 2025-3-25 02:11:54 | 只看該作者
Márta Virágosertain. We show that, the .-gathering problem can be solved in . and . time when the customers and the facilities are on a line, and the customer locations are given by piecewise uniform functions of at most . pieces and “well-separated” uniform distribution functions, respectively.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 08:32
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
京山县| 肇源县| 若羌县| 比如县| 龙州县| 石台县| 和田县| 乐安县| 叙永县| 磐石市| 石林| 新乡市| 南宫市| 黄梅县| 乃东县| 中方县| 冕宁县| 慈利县| 阆中市| 台北市| 宝坻区| 班玛县| 城口县| 含山县| 托克托县| 盐源县| 余干县| 彩票| 安龙县| 永修县| 浪卡子县| 扶沟县| 海城市| 咸阳市| 岢岚县| 梓潼县| 晋中市| 井冈山市| 白水县| 马边| 富裕县|