找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Information Processing; 8th China Conference Buzhou Tang,Qingcai Chen,Haitian Wang Conference proceedings 2023 The Editor(s) (if app

[復制鏈接]
樓主: deep-sleep
41#
發(fā)表于 2025-3-28 17:23:25 | 只看該作者
42#
發(fā)表于 2025-3-28 22:42:08 | 只看該作者
BG-INT: An Entity Alignment Interaction Model Based on BERT and GCN-source data includes monolingual and multilingual data. Entity alignment is a key technology for knowledge fusion, while existing entity alignment models only use entity part information to learn vector representations, which limits the performance of the models. This paper proposes an entity align
43#
發(fā)表于 2025-3-28 23:02:24 | 只看該作者
An Semantic Similarity Matching Method for Chinese Medical Question Texte deep architecture BERT-MSBiLSTM-Attentions (BMA) which uses the Bidirectional Encoder Representations from Transformers (BERT), Multi-layer Siamese Bi-directional Long Short Term Memory (MSBiLSTM) and dual attention mechanism (Attentions) in order to solve the current question semantic similarity
44#
發(fā)表于 2025-3-29 03:25:37 | 只看該作者
A Biomedical Named Entity Recognition Framework with?Multi-granularity Prompt Tuningce. To address this challenge, this paper proposes Prompt-BioNER, a BioNER framework using prompt tuning. Specifically, the framework is based on multi-granularity prompt fusion and achieves different levels of feature extraction through masked language model and next sentence prediction pre-trained
45#
發(fā)表于 2025-3-29 11:04:22 | 只看該作者
46#
發(fā)表于 2025-3-29 13:09:40 | 只看該作者
47#
發(fā)表于 2025-3-29 19:21:11 | 只看該作者
48#
發(fā)表于 2025-3-29 20:36:58 | 只看該作者
An End-to-End Knowledge Graph Based Question Answering Approach for COVID-19-based question answering, which is very valuable for biomedical domain. In addition, existing question answering methods rely on knowledge embedding models to represent knowledge (i.e., entities and questions), but the relations between entities are neglected. In this paper, we construct a COVID-19
49#
發(fā)表于 2025-3-30 00:08:15 | 只看該作者
Discovering Combination Patterns of Traditional Chinese Medicine for the Treatment of Gouty Arthritia major challenge to explore effective drug combinations due to the complexity of TCM components and the wide variation in drug prescriptions. Data mining technology provides more accurate drug screening and disease prediction than classical statistical methods. This study explores the usage pattern
50#
發(fā)表于 2025-3-30 07:58:28 | 只看該作者
Automatic Classification of?Nursing Adverse Events Using a?Hybrid Neural Network Modelability to damage personal health or increase the economic burden of patients. At present, the analysis of nursing adverse event report mainly focuses on its structured report content. However, the unstructured text content in the report contains the whole process of the event, but it is often ignor
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鲁山县| 同江市| 闸北区| 黑山县| 正定县| 肃南| 布尔津县| 县级市| 昌吉市| 白城市| 宝应县| 肥东县| 铜鼓县| 金湖县| 交口县| 彭水| 宣武区| 嘉义县| 西充县| 全椒县| 阿坝| 隆安县| 清流县| 达尔| 江孜县| 邵武市| 若尔盖县| 大安市| 宜阳县| 察隅县| 察哈| 泽州县| 金溪县| 琼海市| 阿克陶县| 岫岩| 都安| 沙坪坝区| 古浪县| 庆阳市| 察雅县|