找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Information Processing; 9th China Health Inf Hua Xu,Qingcai Chen,Zhengxing Huang Conference proceedings 2024 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: 烤問
41#
發(fā)表于 2025-3-28 16:30:52 | 只看該作者
DeYue Yin,ZhiChang Zhang,Hao Wei,WenJun Xiangg when all the solutions of two linear functional systems are in a one-to-one correspondence. To do that, we first provide a new characterization of isomorphic finitely presented modules in terms of inflation of their presentation matrices. We then prove several isomorphisms which are consequences o
42#
發(fā)表于 2025-3-28 21:16:43 | 只看該作者
ion for linear systems and to present novel algebraic methods in the case of several variables. The state-of-art in the introduction is followed by a brief description of the methodology in the subsequent sections. Our new algebraic methods are illustrated by two examples in the multidimensional cas
43#
發(fā)表于 2025-3-28 23:11:12 | 只看該作者
44#
發(fā)表于 2025-3-29 04:51:18 | 只看該作者
Cross-Lingual Name Entity Recognition from Clinical Text Using Mixed Language Querynsferring knowledge from high-resource languages. Particularly, in the clinical domain, the lack of annotated corpora for Cross-Lingual NER hinders the development of cross-lingual clinical text named entity recognition. By leveraging the English clinical text corpus I2B2 2010 and the Chinese clinic
45#
發(fā)表于 2025-3-29 07:35:03 | 只看該作者
PEMRC: A Positive Enhanced Machine Reading Comprehension Method for?Few-Shot Named Entity Recognitio .achine .eading .omprehension). PEMRC is based on the idea of using machine reading comprehension reading comprehension (MRC) framework to perfome few-shot NER and fully exploit the prior knowledge implied in the label information. On one hand, we design three different query templates to better in
46#
發(fā)表于 2025-3-29 14:31:39 | 只看該作者
Medical Entity Recognition with Few-Shot Based on Chinese Character Radicalsht, we proposed the CSR-ProtoLERT model to integrate Chinese character radical information into few-shot entity recognition to enhance the contextual representation of the text. We optimized the pre-training embeddings, extracted radicals corresponding to Chinese characters from an online Chinese di
47#
發(fā)表于 2025-3-29 17:04:12 | 只看該作者
Biomedical Named Entity Recognition Based on?Multi-task Learningextract key information from large amounts of text quickly and accurately. But the problem of unclear boundary recognition and underutilization of hierarchical information has always existed in the task of entity recognition in the biomedical domain. Based on this, the paper proposes a novel Biomedi
48#
發(fā)表于 2025-3-29 23:48:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:54:24 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:08 | 只看該作者
Multi-head Attention and Graph Convolutional Networks with Regularized Dropout for Biomedical Relati extracted medical relations can be used in clinical diagnosis, medical knowledge discovery, and so on. The benefits for pharmaceutical companies, health care providers, and public health are enormous. Previous studies have shown that both semantic information and dependent information in the corpus
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伽师县| 上饶县| 鄂州市| 奈曼旗| 陇南市| 泸水县| 仁化县| 海安县| 翼城县| 长春市| 司法| 天门市| 东城区| 祁阳县| 九江市| 石阡县| 湘乡市| 潍坊市| 西盟| 郓城县| 乐都县| 林甸县| 田阳县| 清苑县| 镇雄县| 九江市| 韶山市| 新龙县| 大方县| 姚安县| 前郭尔| 怀远县| 赤水市| 嘉峪关市| 泰顺县| 随州市| 武城县| 娄底市| 雷山县| 广河县| 潮安县|