找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Inequality and Development; Mark McGillivray (Research Chair in International Book 2011 Palgrave Macmillan, a division of Macmilla

[復(fù)制鏈接]
樓主: 全體
11#
發(fā)表于 2025-3-23 11:33:54 | 只看該作者
Studies in Development Economics and Policyhttp://image.papertrans.cn/h/image/424690.jpg
12#
發(fā)表于 2025-3-23 16:38:25 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:12 | 只看該作者
Measurement and Explanation of Inequality in Health and Health Care in Low-Income Settings,s factors have contributed to this development. An increased interest and awareness among international organizations, governments and non-governmental organizations worldwide is certainly one factor. But the increased availability of micro data sets and the development of new analytic methods also must have played an important role.
14#
發(fā)表于 2025-3-23 23:48:05 | 只看該作者
,Individual and Collective Resources and Women’s Health in Morocco,on health provided by an individual’s income be reproduced instead (or in addition) by the level of collective resources?. Can the individual’s capacity to produce health be increased or constrained by the presence or absence of appropriate collective resources given the level of individual resources? If yes, under which conditions?
15#
發(fā)表于 2025-3-24 04:08:53 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:00 | 只看該作者
Mark McGillivray,Indranil Dutta,David Lawsonall Sylow subgroups of π are cyclic. In the spin case, the conjecture is closely tied to the structure of the assembly map ..(.π) → ..(.π), and we compute this map explicitly for all finite groups π. Finally, we give some evidence for the conjecture in the case of spin manifolds with π = ./2.
17#
發(fā)表于 2025-3-24 13:09:32 | 只看該作者
Mark McGillivrayall Sylow subgroups of π are cyclic. In the spin case, the conjecture is closely tied to the structure of the assembly map ..(.π) → ..(.π), and we compute this map explicitly for all finite groups π. Finally, we give some evidence for the conjecture in the case of spin manifolds with π = ./2.
18#
發(fā)表于 2025-3-24 17:42:42 | 只看該作者
Clive J. Mutungaall Sylow subgroups of π are cyclic. In the spin case, the conjecture is closely tied to the structure of the assembly map ..(.π) → ..(.π), and we compute this map explicitly for all finite groups π. Finally, we give some evidence for the conjecture in the case of spin manifolds with π = ./2.
19#
發(fā)表于 2025-3-24 20:09:25 | 只看該作者
Mariano Rojasall Sylow subgroups of π are cyclic. In the spin case, the conjecture is closely tied to the structure of the assembly map ..(.π) → ..(.π), and we compute this map explicitly for all finite groups π. Finally, we give some evidence for the conjecture in the case of spin manifolds with π = ./2.
20#
發(fā)表于 2025-3-24 23:43:51 | 只看該作者
Marie-Claude Martinall Sylow subgroups of π are cyclic. In the spin case, the conjecture is closely tied to the structure of the assembly map ..(.π) → ..(.π), and we compute this map explicitly for all finite groups π. Finally, we give some evidence for the conjecture in the case of spin manifolds with π = ./2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商洛市| 攀枝花市| 重庆市| 潜山县| 五原县| 甘肃省| 泾阳县| 朝阳市| 合作市| 阳西县| 新丰县| 陇川县| 德令哈市| 禹城市| 正阳县| 宁晋县| 建瓯市| 随州市| 成安县| 梁山县| 大竹县| 昌吉市| 安国市| 房山区| 那曲县| 胶州市| 堆龙德庆县| 英吉沙县| 内江市| 滨海县| 鹤庆县| 万安县| 岳普湖县| 汕尾市| 玉田县| 平度市| 安化县| 克什克腾旗| 民勤县| 延津县| 东乡族自治县|