找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Health Geography in Sub-Saharan Africa; Development-Health N Joseph Asumah Braimah,Elijah Bisung,Vincent Kuuire Book 2023 The Editor(s) (if

[復(fù)制鏈接]
樓主: BRISK
51#
發(fā)表于 2025-3-30 10:48:52 | 只看該作者
52#
發(fā)表于 2025-3-30 16:01:56 | 只看該作者
One construct closed aspherical PL-manifolds which are not homotopy equivalent to closed smooth manifolds. Examples of closed aspherical T0P-manifolds which are not homeomorphic to closed PL-manifolds are also given.
53#
發(fā)表于 2025-3-30 18:45:16 | 只看該作者
Eunice Annan-Aggrey,Senanu Kwasi Kutor,Elmond Bandauko,Godwin ArkuOne construct closed aspherical PL-manifolds which are not homotopy equivalent to closed smooth manifolds. Examples of closed aspherical T0P-manifolds which are not homeomorphic to closed PL-manifolds are also given.
54#
發(fā)表于 2025-3-30 22:38:15 | 只看該作者
This chapter is an introduction to the rich structure possessed by a set endowed with a group operation. The first notion we will explore is that of ., or?subsets of a group that themselves satisfy all the properties of a group.
55#
發(fā)表于 2025-3-31 04:28:02 | 只看該作者
56#
發(fā)表于 2025-3-31 07:07:40 | 只看該作者
Mark A. Deka,Niaz MorshedWe have worked quite hard to find a space whose fundamental group?is non-trivial. We should capitalize on this result and see if we can find other, related spaces whose fundamental groups can now be computed easily as a result of our hard work. An example where this approach is successful is for ..
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长宁县| 积石山| 广安市| 福州市| 时尚| 陵水| 芦山县| 崇仁县| 辉南县| 苗栗市| 绵竹市| 兴国县| 宁河县| 合作市| 永州市| 交城县| 贵州省| 卢湾区| 庆城县| 霞浦县| 三都| 蚌埠市| 西藏| 吉安市| 合作市| 闸北区| 南漳县| 察哈| 开平市| 梁河县| 滕州市| 杂多县| 肇州县| 理塘县| 旅游| 正定县| 汝阳县| 宾阳县| 循化| 洪泽县| 中宁县|