找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Data Management; Schlüsselfaktor für Viola Henke,Gregor Hülsken,Julian Varghese Book 2024 Der/die Herausgeber bzw. der/die Autor(en

[復(fù)制鏈接]
樓主: Lipase
21#
發(fā)表于 2025-3-25 04:01:28 | 只看該作者
Thomas Petzold,Benjamin B?hland,Anja Schuster,Nikolaus von Derckswhen an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
22#
發(fā)表于 2025-3-25 09:02:39 | 只看該作者
23#
發(fā)表于 2025-3-25 11:40:34 | 只看該作者
Martin Knüttel,Helmut Hildebrandt,Thorsten Hagemann,Anja Stührenbergwhen an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
24#
發(fā)表于 2025-3-25 16:31:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:19:39 | 只看該作者
when an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
26#
發(fā)表于 2025-3-26 02:30:50 | 只看該作者
Markus Leyck Diekenwhen an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
27#
發(fā)表于 2025-3-26 04:19:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:37 | 只看該作者
29#
發(fā)表于 2025-3-26 13:22:07 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 舞阳县| 仁怀市| 尼勒克县| 桐柏县| 宿州市| 建阳市| 安新县| 瑞昌市| 江山市| 镶黄旗| 水富县| 县级市| 固镇县| 包头市| 高要市| 夏邑县| 通化市| 共和县| 吉安市| 六枝特区| 鹤岗市| 黔江区| 习水县| 安新县| 伊春市| 夏津县| 疏勒县| 莆田市| 雷波县| 中西区| 且末县| 旅游| 宜兴市| 潢川县| 偃师市| 云安县| 尉犁县| 云南省| 于都县| 宁海县|