找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Data Management; Schlüsselfaktor für Viola Henke,Gregor Hülsken,Julian Varghese Book 2024 Der/die Herausgeber bzw. der/die Autor(en

[復(fù)制鏈接]
樓主: Lipase
21#
發(fā)表于 2025-3-25 04:01:28 | 只看該作者
Thomas Petzold,Benjamin B?hland,Anja Schuster,Nikolaus von Derckswhen an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
22#
發(fā)表于 2025-3-25 09:02:39 | 只看該作者
23#
發(fā)表于 2025-3-25 11:40:34 | 只看該作者
Martin Knüttel,Helmut Hildebrandt,Thorsten Hagemann,Anja Stührenbergwhen an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
24#
發(fā)表于 2025-3-25 16:31:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:19:39 | 只看該作者
when an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
26#
發(fā)表于 2025-3-26 02:30:50 | 只看該作者
Markus Leyck Diekenwhen an affine scheme is glued. Under mild hypotheses, for example, glued schemes are seminormal. We then investigate the K-theory of glued schemes and develop an Atiyah-Hirzebruch type spectral sequence which converges to the Karoubi-Villamayor K-theory of the glued scheme. This allows us to comput
27#
發(fā)表于 2025-3-26 04:19:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:37 | 只看該作者
29#
發(fā)表于 2025-3-26 13:22:07 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东平县| 泌阳县| 上林县| 丰宁| 尚志市| 五台县| 阳泉市| 布拖县| 波密县| 达孜县| 海南省| 广河县| 湟源县| 达州市| 绥宁县| 柘城县| 新乡市| 吉林省| 遵义县| 吴川市| 洮南市| 天津市| 哈巴河县| 潮州市| 琼中| 安远县| 长治市| 广昌县| 泾川县| 龙井市| 湟中县| 静海县| 迁安市| 阿巴嘎旗| 宜州市| 鄂伦春自治旗| 淮安市| 江津市| 盈江县| 静宁县| 阿克陶县|