找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Transition; Building a Program f Albert C. Hergenroeder,Constance M. Wiemann Book 2018 Springer International Publishing AG, pa

[復(fù)制鏈接]
樓主: Systole
11#
發(fā)表于 2025-3-23 11:20:21 | 只看該作者
Laura G. Buckner M.Ed., L.P.C.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
12#
發(fā)表于 2025-3-23 13:52:22 | 只看該作者
Cecily L. Betz Ph.D., R.N.This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
13#
發(fā)表于 2025-3-23 20:52:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:52 | 只看該作者
Beth Sufian J.D.,James Passamano J.D.,Amy Sopchak J.D.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
15#
發(fā)表于 2025-3-24 04:18:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:25 | 只看該作者
17#
發(fā)表于 2025-3-24 13:58:56 | 只看該作者
18#
發(fā)表于 2025-3-24 17:09:24 | 只看該作者
Roberta G. Williams M.D.,Ellen F. Iverson M.P.H.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
19#
發(fā)表于 2025-3-24 22:56:08 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高邑县| 时尚| 丁青县| 陕西省| 陈巴尔虎旗| 锦州市| 宁陵县| 邢台市| 葵青区| 乾安县| 和平区| 长宁区| 新乡县| 噶尔县| 海口市| 丹寨县| 万安县| 哈密市| 临沂市| 玛曲县| 东辽县| 利辛县| 浑源县| 保德县| 湘乡市| 东港市| 淄博市| 新乐市| 柯坪县| 团风县| 永德县| 秦皇岛市| 泸西县| 荣成市| 成都市| 科技| 旺苍县| 积石山| 博野县| 惠东县| 兴义市|