找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Transition; Building a Program f Albert C. Hergenroeder,Constance M. Wiemann Book 2018 Springer International Publishing AG, pa

[復(fù)制鏈接]
樓主: Systole
11#
發(fā)表于 2025-3-23 11:20:21 | 只看該作者
Laura G. Buckner M.Ed., L.P.C.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
12#
發(fā)表于 2025-3-23 13:52:22 | 只看該作者
Cecily L. Betz Ph.D., R.N.This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
13#
發(fā)表于 2025-3-23 20:52:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:52 | 只看該作者
Beth Sufian J.D.,James Passamano J.D.,Amy Sopchak J.D.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
15#
發(fā)表于 2025-3-24 04:18:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:25 | 只看該作者
17#
發(fā)表于 2025-3-24 13:58:56 | 只看該作者
18#
發(fā)表于 2025-3-24 17:09:24 | 只看該作者
Roberta G. Williams M.D.,Ellen F. Iverson M.P.H.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
19#
發(fā)表于 2025-3-24 22:56:08 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿城市| 清水县| 六安市| 安化县| 衢州市| 梓潼县| 郴州市| 巴彦淖尔市| 天祝| 麻江县| 万载县| 牡丹江市| 大兴区| 巫溪县| 阿拉善左旗| 武宁县| 大港区| 石首市| 万州区| 同心县| 密山市| 邻水| 商丘市| 马关县| 视频| 溧阳市| 安岳县| 元阳县| 江口县| 德令哈市| 天门市| 共和县| 寿阳县| 永登县| 革吉县| 扶风县| 塔城市| 安泽县| 虎林市| 阿勒泰市| 鹤岗市|