找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Transition; Building a Program f Albert C. Hergenroeder,Constance M. Wiemann Book 2018 Springer International Publishing AG, pa

[復(fù)制鏈接]
樓主: Systole
11#
發(fā)表于 2025-3-23 11:20:21 | 只看該作者
Laura G. Buckner M.Ed., L.P.C.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
12#
發(fā)表于 2025-3-23 13:52:22 | 只看該作者
Cecily L. Betz Ph.D., R.N.This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
13#
發(fā)表于 2025-3-23 20:52:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:52 | 只看該作者
Beth Sufian J.D.,James Passamano J.D.,Amy Sopchak J.D.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
15#
發(fā)表于 2025-3-24 04:18:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:25 | 只看該作者
17#
發(fā)表于 2025-3-24 13:58:56 | 只看該作者
18#
發(fā)表于 2025-3-24 17:09:24 | 只看該作者
Roberta G. Williams M.D.,Ellen F. Iverson M.P.H.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
19#
發(fā)表于 2025-3-24 22:56:08 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉首市| 津南区| 基隆市| 西青区| 德兴市| 吉木乃县| 乌兰县| 尼木县| 金塔县| 正宁县| 右玉县| 滨州市| 鄂托克前旗| 镶黄旗| 武威市| 遂溪县| 扬州市| 巴青县| 九台市| 师宗县| 海口市| 大石桥市| 南充市| 云和县| 彭阳县| 建平县| 成武县| 清丰县| 丽江市| 天镇县| 嵊州市| 菏泽市| 余姚市| 德保县| 马关县| 广灵县| 太保市| 文登市| 务川| 宁河县| 安溪县|