找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Systems Engineering for Scientists and Practitioners; HCSE, Lyon, France, Andrea Matta,Evren Sahin,Nico J. Vandaele Conference

[復(fù)制鏈接]
樓主: 兇惡的老婦
31#
發(fā)表于 2025-3-27 00:14:16 | 只看該作者
32#
發(fā)表于 2025-3-27 02:54:49 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:04 | 只看該作者
34#
發(fā)表于 2025-3-27 13:18:01 | 只看該作者
35#
發(fā)表于 2025-3-27 13:41:15 | 只看該作者
Paola Cappanera,Filippo Visintin,Carlo Banditorinn surface of the function. One can get a complete picture of the function only by considering it on the whole of its Riemann surface. This surface has a nontrivial geometry, which determines some of the essential characters of the function.
36#
發(fā)表于 2025-3-27 20:46:44 | 只看該作者
Multi-criteria Decision Making Approaches to Prioritize Surgical Patients,s and mitigate the limitations of the prioritization systems observed in practice. Our numerical study confirms that the proposed models, which consider various perspectives in determining patients’ priorities, show a remarkable robustness.
37#
發(fā)表于 2025-3-28 01:05:50 | 只看該作者
38#
發(fā)表于 2025-3-28 03:21:55 | 只看該作者
39#
發(fā)表于 2025-3-28 09:04:09 | 只看該作者
Yong-Hong Kuo,Janny M. Y. Leung,Colin A. Grahamh as possible and to concentrate on geometry, we shall assume in the first three chapters that the field . is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.
40#
發(fā)表于 2025-3-28 10:51:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上思县| 昌都县| 监利县| 榆中县| 贵定县| 澄江县| 安丘市| 高唐县| 元氏县| 绥滨县| 安义县| 竹山县| 永胜县| 南投市| 淳化县| 临泉县| 凤凰县| 临潭县| 萝北县| 郁南县| 永济市| 治多县| 烟台市| 马鞍山市| 大余县| 万载县| 察雅县| 久治县| 太仆寺旗| 乌兰县| 体育| 麦盖提县| 凤翔县| 那坡县| 温泉县| 玉龙| 和平区| 西峡县| 招远市| 宁海县| 巫山县|