找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Reform Simplified; What Professionals i Dave Parks Book 2012Latest edition David Parks 2012

[復(fù)制鏈接]
樓主: Addiction
11#
發(fā)表于 2025-3-23 10:38:04 | 只看該作者
12#
發(fā)表于 2025-3-23 16:07:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:38 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:41 | 只看該作者
Dave Parksdegree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversal deformation. Some applications of this fact are given in particular to the non-smooth-ability of certain curves.
15#
發(fā)表于 2025-3-24 06:18:57 | 只看該作者
topologically trivial iff the Milnor numbers of the singularities are constant during the deformation. The Milnor number also occurs naturally in the degree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversa
16#
發(fā)表于 2025-3-24 08:31:57 | 只看該作者
17#
發(fā)表于 2025-3-24 13:49:49 | 只看該作者
Dave Parkscal polar variety of codimension k of X, as defined by Lê D.T. and myself, and m. denotes the multiplicity at x..One can visualize P.(X) as follows : Pick an embedding X??. of a representative of (X, x) and take a general linear projection p : ?.→?.. The closure in X of the critical locus of the res
18#
發(fā)表于 2025-3-24 17:52:21 | 只看該作者
Dave Parkscal polar variety of codimension k of X, as defined by Lê D.T. and myself, and m. denotes the multiplicity at x..One can visualize P.(X) as follows : Pick an embedding X??. of a representative of (X, x) and take a general linear projection p : ?.→?.. The closure in X of the critical locus of the res
19#
發(fā)表于 2025-3-24 21:27:07 | 只看該作者
Dave Parkstopologically trivial iff the Milnor numbers of the singularities are constant during the deformation. The Milnor number also occurs naturally in the degree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversa
20#
發(fā)表于 2025-3-25 03:12:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴塘县| 安宁市| 芒康县| 涟源市| 漠河县| 紫阳县| 诏安县| 兴文县| 永德县| 武功县| 南宁市| 涟水县| 闵行区| 中阳县| 汉沽区| 沙坪坝区| 济阳县| 沙雅县| 永登县| 崇明县| 中卫市| 嘉定区| 天柱县| 丰城市| 江孜县| 龙井市| 墨江| 池州市| 巴南区| 潼关县| 墨竹工卡县| 平定县| 西宁市| 日土县| 宽城| 客服| 冀州市| 和平区| 自贡市| 临朐县| 金阳县|