找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Provision and Patient Mobility; Health Integration i Rosella Levaggi,Marcello Montefiori Book 2014 Springer-Verlag Italia 2014

[復(fù)制鏈接]
樓主: 漏出
21#
發(fā)表于 2025-3-25 03:42:23 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:32 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:01 | 只看該作者
24#
發(fā)表于 2025-3-25 18:27:14 | 只看該作者
Irene A. Glinosn intersections always contain a certain number of special cases due to parallel lines or asymptotes. For example, in the plane two distinct lines meet at a unique point except when they are parallel. In projective space, there are no such exceptions.
25#
發(fā)表于 2025-3-25 21:25:13 | 只看該作者
Mark Dusheiko(curves) and 2 (surfaces)… We will give a very natural topological definition of dimension, which is not always easy to work with, followed by other definitions which are easier to work with but which depend on results from algebra.
26#
發(fā)表于 2025-3-26 00:28:09 | 只看該作者
Silvia Balia,Rinaldo Brau,Emanuela MarrocuWe consider a general member of a Lefschetz pencil of surfaces in weighted projective 3-spaces of type (1,1,a,b) where gad(a,b)=1. We show that such a surface either has Picard number equal to 1 or all of its 2-cohomolgy is algebraic.
27#
發(fā)表于 2025-3-26 07:54:18 | 只看該作者
Rosella Levaggi,Francesco MenoncinWe consider a general member of a Lefschetz pencil of surfaces in weighted projective 3-spaces of type (1,1,a,b) where gad(a,b)=1. We show that such a surface either has Picard number equal to 1 or all of its 2-cohomolgy is algebraic.
28#
發(fā)表于 2025-3-26 12:24:35 | 只看該作者
29#
發(fā)表于 2025-3-26 13:32:39 | 只看該作者
30#
發(fā)表于 2025-3-26 18:25:11 | 只看該作者
Rosella Levaggi,Marcello MontefioriRelevant policy issue.Originality of the topic at stake.Useful as reading/studying book for graduates and PhD students.Includes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安庆市| 花莲市| 邵东县| 尼勒克县| 五家渠市| 叶城县| 沁水县| 岳西县| 玉田县| 闻喜县| 临湘市| 兴安盟| 上杭县| 富锦市| 城步| 广元市| 怀远县| 涟水县| 奉新县| 靖宇县| 临夏市| 临高县| 蒙山县| 沾益县| 万年县| 阳西县| 上虞市| 织金县| 仙游县| 山西省| 呈贡县| 洪泽县| 恩施市| 桐梓县| 阿巴嘎旗| 无为县| 喀什市| 霍山县| 莱芜市| 云林县| 新余市|