找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Provision and Patient Mobility; Health Integration i Rosella Levaggi,Marcello Montefiori Book 2014 Springer-Verlag Italia 2014

[復(fù)制鏈接]
樓主: 漏出
21#
發(fā)表于 2025-3-25 03:42:23 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:32 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:01 | 只看該作者
24#
發(fā)表于 2025-3-25 18:27:14 | 只看該作者
Irene A. Glinosn intersections always contain a certain number of special cases due to parallel lines or asymptotes. For example, in the plane two distinct lines meet at a unique point except when they are parallel. In projective space, there are no such exceptions.
25#
發(fā)表于 2025-3-25 21:25:13 | 只看該作者
Mark Dusheiko(curves) and 2 (surfaces)… We will give a very natural topological definition of dimension, which is not always easy to work with, followed by other definitions which are easier to work with but which depend on results from algebra.
26#
發(fā)表于 2025-3-26 00:28:09 | 只看該作者
Silvia Balia,Rinaldo Brau,Emanuela MarrocuWe consider a general member of a Lefschetz pencil of surfaces in weighted projective 3-spaces of type (1,1,a,b) where gad(a,b)=1. We show that such a surface either has Picard number equal to 1 or all of its 2-cohomolgy is algebraic.
27#
發(fā)表于 2025-3-26 07:54:18 | 只看該作者
Rosella Levaggi,Francesco MenoncinWe consider a general member of a Lefschetz pencil of surfaces in weighted projective 3-spaces of type (1,1,a,b) where gad(a,b)=1. We show that such a surface either has Picard number equal to 1 or all of its 2-cohomolgy is algebraic.
28#
發(fā)表于 2025-3-26 12:24:35 | 只看該作者
29#
發(fā)表于 2025-3-26 13:32:39 | 只看該作者
30#
發(fā)表于 2025-3-26 18:25:11 | 只看該作者
Rosella Levaggi,Marcello MontefioriRelevant policy issue.Originality of the topic at stake.Useful as reading/studying book for graduates and PhD students.Includes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华亭县| 山东省| 紫云| 江城| 桦甸市| 吴忠市| 玉环县| 田林县| 抚松县| 莲花县| 玉林市| 阜康市| 望城县| 浪卡子县| 新河县| 平乡县| 成都市| 桂平市| 黑山县| 宜兰县| 宜川县| 南华县| 洪江市| 莲花县| 广河县| 会同县| 巍山| 宣汉县| 永春县| 新竹市| 平舆县| 定边县| 菏泽市| 乌恰县| 新乡县| 旺苍县| 安龙县| 关岭| 台东市| 嘉善县| 邛崃市|