找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Computing; A Survival guide for Philip Burnard Book 1995 Philip Burnard 1995 Windows.databases.design.productivity.software

[復(fù)制鏈接]
樓主: 小費(fèi)
31#
發(fā)表于 2025-3-26 20:56:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:46:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:05 | 只看該作者
34#
發(fā)表于 2025-3-27 13:16:52 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
35#
發(fā)表于 2025-3-27 13:51:38 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
36#
發(fā)表于 2025-3-27 20:00:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:23 | 只看該作者
38#
發(fā)表于 2025-3-28 05:26:39 | 只看該作者
39#
發(fā)表于 2025-3-28 10:15:43 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
40#
發(fā)表于 2025-3-28 14:12:24 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔南| 南汇区| 安龙县| 广平县| 隆子县| 甘洛县| 金坛市| 司法| 宁远县| 阿图什市| 五台县| 武陟县| 湘潭市| 红原县| 白水县| 栾城县| 牙克石市| 邯郸县| 呼伦贝尔市| 敦化市| 巩义市| 开江县| 邛崃市| 甘孜县| 乐平市| 德安县| 辽阳县| 呼图壁县| 卫辉市| 神木县| 阜新市| 钟祥市| 积石山| 长垣县| 易门县| 龙江县| 宜春市| 四川省| 临颍县| 锡林郭勒盟| 平顶山市|