找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Healing through Remembering; Sharing Grassroots E Karin E. Sauer,Dieter Brandes,Mumbere Ndemo Mbasa Book 2023 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: 快樂(lè)
21#
發(fā)表于 2025-3-25 06:52:19 | 只看該作者
s paper addresses itself to that question. In 1974 Govorov [Go-2] conjectured that only rational power series belonged to .. This conjecture was first disproved by Shearer [Sh], using methods which we will generalize and extend in this paper. We will also show that the set . is countable and derive
22#
發(fā)表于 2025-3-25 11:22:52 | 只看該作者
23#
發(fā)表于 2025-3-25 12:59:10 | 只看該作者
24#
發(fā)表于 2025-3-25 16:48:17 | 只看該作者
Denis Kazungus paper addresses itself to that question. In 1974 Govorov [Go-2] conjectured that only rational power series belonged to .. This conjecture was first disproved by Shearer [Sh], using methods which we will generalize and extend in this paper. We will also show that the set . is countable and derive
25#
發(fā)表于 2025-3-25 21:43:37 | 只看該作者
26#
發(fā)表于 2025-3-26 04:04:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:15:00 | 只看該作者
s paper addresses itself to that question. In 1974 Govorov [Go-2] conjectured that only rational power series belonged to .. This conjecture was first disproved by Shearer [Sh], using methods which we will generalize and extend in this paper. We will also show that the set . is countable and derive
28#
發(fā)表于 2025-3-26 11:33:18 | 只看該作者
29#
發(fā)表于 2025-3-26 13:05:03 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:44 | 只看該作者
Célestin Nsengimanaollow immediately as special cases. Moreover, we have discussed some well-known identities, the Binet formula, the Catalan and Hankel transform, and the generating functions for the generalized k-Horadam-like sequences.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马公市| 永靖县| 泾源县| 晋中市| 凤翔县| 松溪县| 南阳市| 宜章县| 兴文县| 大竹县| 黄平县| 西平县| 济宁市| 崇州市| 龙川县| 德阳市| 武义县| 抚宁县| 营山县| 井冈山市| 仙桃市| 内丘县| 宜良县| 绥芬河市| 洪洞县| 桑植县| 彩票| 东山县| 宕昌县| 五河县| 晴隆县| 柏乡县| 平江县| 思南县| 和林格尔县| 梧州市| 林州市| 尉犁县| 阿克陶县| 浑源县| 马边|