找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Healing through Remembering; Sharing Grassroots E Karin E. Sauer,Dieter Brandes,Mumbere Ndemo Mbasa Book 2023 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: 快樂(lè)
21#
發(fā)表于 2025-3-25 06:52:19 | 只看該作者
s paper addresses itself to that question. In 1974 Govorov [Go-2] conjectured that only rational power series belonged to .. This conjecture was first disproved by Shearer [Sh], using methods which we will generalize and extend in this paper. We will also show that the set . is countable and derive
22#
發(fā)表于 2025-3-25 11:22:52 | 只看該作者
23#
發(fā)表于 2025-3-25 12:59:10 | 只看該作者
24#
發(fā)表于 2025-3-25 16:48:17 | 只看該作者
Denis Kazungus paper addresses itself to that question. In 1974 Govorov [Go-2] conjectured that only rational power series belonged to .. This conjecture was first disproved by Shearer [Sh], using methods which we will generalize and extend in this paper. We will also show that the set . is countable and derive
25#
發(fā)表于 2025-3-25 21:43:37 | 只看該作者
26#
發(fā)表于 2025-3-26 04:04:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:15:00 | 只看該作者
s paper addresses itself to that question. In 1974 Govorov [Go-2] conjectured that only rational power series belonged to .. This conjecture was first disproved by Shearer [Sh], using methods which we will generalize and extend in this paper. We will also show that the set . is countable and derive
28#
發(fā)表于 2025-3-26 11:33:18 | 只看該作者
29#
發(fā)表于 2025-3-26 13:05:03 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:44 | 只看該作者
Célestin Nsengimanaollow immediately as special cases. Moreover, we have discussed some well-known identities, the Binet formula, the Catalan and Hankel transform, and the generating functions for the generalized k-Horadam-like sequences.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保靖县| 通许县| 苍南县| 平江县| 靖安县| 安国市| 荆州市| 洪江市| 科技| 阿尔山市| 拜泉县| 邵阳县| 连山| 赤水市| 永定县| 天峻县| 十堰市| 武功县| 开鲁县| 高青县| 安宁市| 厦门市| 仪陇县| 连山| 泾阳县| 紫阳县| 庄河市| 勃利县| 宁南县| 英吉沙县| 绍兴市| 勃利县| 海宁市| 二连浩特市| 邵阳市| 望城县| 衡山县| 通州市| 龙井市| 江陵县| 华坪县|