找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Head and Neck Tumor Segmentation and Outcome Prediction; Third Challenge, HEC Vincent Andrearczyk,Valentin Oreiller,Adrien Depeu Conference

[復(fù)制鏈接]
樓主: 不讓做的事
31#
發(fā)表于 2025-3-26 23:17:04 | 只看該作者
,Stacking Feature Maps of?Multi-scaled Medical Images in?U-Net for?3D Head and?Neck Tumor Segmentatihe medical domain, it remains as challenging tasks since medical data is heterogeneous, multi-level, and multi-scale. Head and Neck Tumor Segmentation Challenge (HECKTOR) provides a platform to apply machine learning techniques to the medical image domain. HECKTOR 2022 provides positron emission tom
32#
發(fā)表于 2025-3-27 05:12:07 | 只看該作者
33#
發(fā)表于 2025-3-27 06:58:18 | 只看該作者
,A U-Net Convolutional Neural Network with?Multiclass Dice Loss for?Automated Segmentation of?Tumors nodes (GTVn) from PET/CT images provided by the HEad and neCK TumOR segmentation challenge (HECKTOR) 2022. We utilized a multiclass Dice Loss for model training which was minimized using the AMSGrad variant of the Adam algorithm optimizer. We trained our 2D models on the axial slices of the images
34#
發(fā)表于 2025-3-27 13:09:37 | 只看該作者
35#
發(fā)表于 2025-3-27 15:10:52 | 只看該作者
,Swin UNETR for?Tumor and?Lymph Node Segmentation Using 3D PET/CT Imaging: A Transfer Learning Approual task performed by radiation oncologists. Deep Learning (DL) algorithms have shown potential in creating automatic segmentations, reducing delineation time and inter-observer variation. The aim of this work was to create automatic segmentations of primary tumors (GTVp) and pathological lymph node
36#
發(fā)表于 2025-3-27 19:38:12 | 只看該作者
,Simplicity Is All You Need: Out-of-the-Box nnUNet Followed by?Binary-Weighted Radiomic Model for?Semarkers towards personalized medicine. In this paper, we propose a pipeline to segment the primary and metastatic lymph nodes from fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) head and neck (H &N) images and then predict recurrence free survival (RFS) based
37#
發(fā)表于 2025-3-27 23:19:39 | 只看該作者
Radiomics-Enhanced Deep Multi-task Learning for Outcome Prediction in Head and Neck Cancer,ds have been widely used for outcome prediction from medical images. However, these methods are limited by their reliance on intractable manual segmentation of tumor regions. Recently, deep learning methods have been proposed to perform end-to-end outcome prediction so as to remove the reliance on m
38#
發(fā)表于 2025-3-28 02:36:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:41:12 | 只看該作者
40#
發(fā)表于 2025-3-28 14:08:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垫江县| 台江县| 松潘县| 铜川市| 东至县| 永修县| 西林县| 沙湾县| 清徐县| 嘉义县| 通州区| 普兰店市| 和林格尔县| 肥西县| 双鸭山市| 阿城市| 灵丘县| 白水县| 神农架林区| 泰州市| 壶关县| 绥芬河市| 辽宁省| 徐州市| 马边| 沧州市| 江北区| 贵德县| 西峡县| 阳城县| 赤壁市| 永济市| 中牟县| 武宁县| 兴业县| 贵定县| 佛坪县| 北辰区| 濉溪县| 绍兴市| 沂源县|