找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic and Applied Analysis; From Radon Transform Filippo De Mari,Ernesto De Vito Book 2021 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
樓主: GERM
21#
發(fā)表于 2025-3-25 04:56:28 | 只看該作者
978-3-030-86666-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
22#
發(fā)表于 2025-3-25 08:53:32 | 只看該作者
23#
發(fā)表于 2025-3-25 11:41:25 | 只看該作者
,Entropy and?Concentration, general framework the famous bounded difference inequality, versions of Bernstein’s inequality, and the Gaussian concentration inequality are derived. Applications include vector-valued concentration, random matrices, and the suprema of empirical processes.
24#
發(fā)表于 2025-3-25 17:14:55 | 只看該作者
25#
發(fā)表于 2025-3-25 23:05:58 | 只看該作者
26#
發(fā)表于 2025-3-26 01:26:05 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:58 | 只看該作者
Applied and Numerical Harmonic Analysishttp://image.papertrans.cn/h/image/424311.jpg
28#
發(fā)表于 2025-3-26 08:52:53 | 只看該作者
,Unitarization of?the?Horocyclic Radon Transform on?Symmetric Spaces,tor such that the pre-composition with the Radon transform extends to a unitary operator ., where . is a closed subspace of . which accounts for the Weyl symmetries. Furthermore, we show that the unitary extension intertwines the quasi-regular representations of . on . and ..
29#
發(fā)表于 2025-3-26 16:24:30 | 只看該作者
Book 2021nce.? This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019.? Each chapter offers an introduction to essential material and then demo
30#
發(fā)表于 2025-3-26 18:19:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额敏县| 正安县| 名山县| 东乌| 沙洋县| 中阳县| 冷水江市| 定远县| 玉溪市| 和田市| 南和县| 双江| 藁城市| 宁强县| 永川市| 平江县| 安义县| 富平县| 浪卡子县| 镇安县| 德州市| 靖江市| 阿尔山市| 贵阳市| 乡宁县| 湘阴县| 马公市| 无极县| 合作市| 灵石县| 阜康市| 分宜县| 陇西县| 西昌市| 乌拉特后旗| 湘乡市| 稻城县| 南郑县| 小金县| 庄浪县| 柞水县|