找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Vesna Todor?evi? Book 2019 Springer Nature Switzerland AG 2019 quasiconforma

[復(fù)制鏈接]
查看: 8267|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:15:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics
編輯Vesna Todor?evi?
視頻videohttp://file.papertrans.cn/425/424309/424309.mp4
概述Covers harmonic quasiconformal mappings and hyperbolic type metrics in the plane and in the space.Includes an extensive bibliography of the field.Self contained presentation of a currently active rese
圖書封面Titlebook: Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics;  Vesna Todor?evi? Book 2019 Springer Nature Switzerland AG 2019 quasiconforma
描述.The book presents a research area in geometric function theory concerned with harmonic quasiconformal mappings and hyperbolic type metrics defined on planar and multidimensional domains. The classes of quasiconformal and quasiregular mappings are well established areas of study in this field as these classes are natural and fruitful generalizations of the class of analytic functions in the planar case. The book contains many concrete examples, as well as detailed proofs and explanations of motivations behind given results, gradually bringing the reader to the forefront of current research in the area. This monograph was written for a wide readership from graduate students of mathematical analysis to researchers working in this or related areas of mathematics who want to learn the tools or work on open problems listed in various parts of the book..
出版日期Book 2019
關(guān)鍵詞quasiconformal mappings; harmonic quasiconformal mappings; moduli of continuity; hyperbolic type metric
版次1
doihttps://doi.org/10.1007/978-3-030-22591-9
isbn_softcover978-3-030-22593-3
isbn_ebook978-3-030-22591-9
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics影響因子(影響力)




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics影響因子(影響力)學(xué)科排名




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics網(wǎng)絡(luò)公開度




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics被引頻次




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics被引頻次學(xué)科排名




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics年度引用




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics年度引用學(xué)科排名




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics讀者反饋




書目名稱Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:07 | 只看該作者
field.Self contained presentation of a currently active rese.The book presents a research area in geometric function theory concerned with harmonic quasiconformal mappings and hyperbolic type metrics defined on planar and multidimensional domains. The classes of quasiconformal and quasiregular mappi
板凳
發(fā)表于 2025-3-22 04:17:17 | 只看該作者
Distance Ratio Metric,se of the distance ratio metric. The natural question is to find Lipschitz constants for this metric under M?bius transformations or arbitrary holomorphic mappings. The domains we work with here are the unit ball, the punctured ball, and the upper half space.
地板
發(fā)表于 2025-3-22 05:17:39 | 只看該作者
5#
發(fā)表于 2025-3-22 10:14:54 | 只看該作者
6#
發(fā)表于 2025-3-22 16:35:54 | 只看該作者
Quasiconformal and Quasiregular Harmonic Mappings,ormal or quasiregular at the same time, are considered and some sharp estimates are given for all dimensions .?≥?2. In particular, we study the case of Lipschitz continuity of mappings defined in the unit ball.
7#
發(fā)表于 2025-3-22 17:58:21 | 只看該作者
Book 2019 planar and multidimensional domains. The classes of quasiconformal and quasiregular mappings are well established areas of study in this field as these classes are natural and fruitful generalizations of the class of analytic functions in the planar case. The book contains many concrete examples, a
8#
發(fā)表于 2025-3-22 21:12:22 | 只看該作者
JUnit4 is a much more vanilla implementation of the JUnit standard (see . for more information or . for the source code). The current recommended version of JUnit we’re loading in the build.gradle file is 4.12
9#
發(fā)表于 2025-3-23 04:45:34 | 只看該作者
Vesna Todor?evi?e on the essential features of our subject of thought, ignoring irrelevant details (Devlin .; Kramer .). Abstraction is especially important in solving complex problems as it enables the problem solver to think in terms of conceptual ideas rather than in terms of their details. Though abstraction is
10#
發(fā)表于 2025-3-23 06:29:46 | 只看該作者
Vesna Todor?evi? of the book, focuses on evolution. In particular, it will cover genetic algorithms, a computational metaphor for how genetic information is recombined and passed through generations. This algorithm focuses on the pillars of how evolution naturally happens.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳山县| 永城市| 定远县| 云林县| 浙江省| 桂平市| 米易县| 阳信县| 抚州市| 西峡县| 尼勒克县| 五大连池市| 南宁市| 安化县| 卢龙县| 河源市| 绥中县| 库尔勒市| 宁乡县| 门头沟区| 宝丰县| 高青县| 苍溪县| 澎湖县| 榆社县| 集贤县| 武陟县| 江源县| 陆丰市| 郎溪县| 福建省| 太湖县| 抚顺市| 桐柏县| 天津市| 儋州市| 韶关市| 南陵县| 无极县| 竹北市| 延边|