找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General; Audrey Terras Textbook 2016Latest ed

[復制鏈接]
查看: 9496|回復: 35
樓主
發(fā)表于 2025-3-21 16:07:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General
編輯Audrey Terras
視頻videohttp://file.papertrans.cn/425/424290/424290.mp4
概述New edition extensively revised and updated.Includes many new figures and examples.New topics include random matrix theory and quantum chaos.Includes recent work on modular forms and their correspondi
圖書封面Titlebook: Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General;  Audrey Terras Textbook 2016Latest ed
描述.This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel‘s upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices..Manycorrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-
出版日期Textbook 2016Latest edition
關鍵詞Eisenstein series; Harish-Chandra c-function; Helgason-Fourier transform; Poisson summation formula; Sel
版次2
doihttps://doi.org/10.1007/978-1-4939-3408-9
isbn_softcover978-1-4939-8042-0
isbn_ebook978-1-4939-3408-9
copyrightSpringer Science+Business Media New York 2016
The information of publication is updating

書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General影響因子(影響力)




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General影響因子(影響力)學科排名




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General網絡公開度




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General網絡公開度學科排名




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General被引頻次




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General被引頻次學科排名




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General年度引用




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General年度引用學科排名




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General讀者反饋




書目名稱Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:49:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:29:36 | 只看該作者
地板
發(fā)表于 2025-3-22 08:10:48 | 只看該作者
Audrey Terrasponsive behaviour. However, current state-of-the-art methods are heavily dependant on physics-driven feedback to learn character behaviours and are not transferable to portraying behaviour such as social interactions and gestures. In this paper, we present a novel approach to data-driven character a
5#
發(fā)表于 2025-3-22 10:37:19 | 只看該作者
6#
發(fā)表于 2025-3-22 16:25:10 | 只看該作者
7#
發(fā)表于 2025-3-22 17:41:39 | 只看該作者
8#
發(fā)表于 2025-3-22 21:55:58 | 只看該作者
9#
發(fā)表于 2025-3-23 01:55:13 | 只看該作者
Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and General
10#
發(fā)表于 2025-3-23 07:23:05 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 07:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
榆林市| 肇源县| 甘孜县| 扎兰屯市| 高邮市| 阳高县| 留坝县| 荆州市| 东港市| 弥渡县| 突泉县| 称多县| 方正县| 林州市| 吉隆县| 马关县| 古浪县| 白银市| 玉山县| 黄浦区| 巴林左旗| 高雄市| 获嘉县| 尼玛县| 平和县| 山阳县| 调兵山市| 莱西市| 永兴县| 贡嘎县| 甘孜| 台州市| 东源县| 特克斯县| 吕梁市| 兖州市| 南部县| 东兰县| 察哈| 多伦县| 阜新|