找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis on Exponential Solvable Lie Groups; Hidenori Fujiwara,Jean Ludwig Book 2015 Springer Japan 2015 Exponential solvable Lie

[復(fù)制鏈接]
樓主: mortality
31#
發(fā)表于 2025-3-26 22:18:49 | 只看該作者
32#
發(fā)表于 2025-3-27 02:10:39 | 只看該作者
to provide incentives to do so. I survey several approaches to eliciting truthful information, in particular scoring rules, peer prediction methods and opinion polls, and discuss possible applications.
33#
發(fā)表于 2025-3-27 06:01:55 | 只看該作者
34#
發(fā)表于 2025-3-27 09:48:14 | 只看該作者
35#
發(fā)表于 2025-3-27 15:57:05 | 只看該作者
(oldsymbol{e}) -Central Elements,tent Lie group with Lie algebra .. Let us introduce .-central elements due to Corwin and Greenleaf [17]. Let . be a composition series of ideals of .. Let {. .}. be a Malcev basis of . according to this composition series, i.e. . and . its dual basis in .. We denote the coordinates of . by .. Then .
36#
發(fā)表于 2025-3-27 20:32:02 | 只看該作者
Frobenius Reciprocity,er the . .-vectors. Let .. When the function . is . ., . is called a . .-vector. We denote by . the space of the . .-vectors of .. {. .}. . being the approximate identity of . .(.) introduced in Proposition?. and chosen in ., we see that . for any .. As ., . is a dense subspace of . and . acts there
37#
發(fā)表于 2025-3-27 22:34:45 | 只看該作者
38#
發(fā)表于 2025-3-28 05:55:48 | 只看該作者
Hidenori Fujiwara,Jean LudwigExplains topics that have been actively studied in the non-commutative harmonic analysis of solvable Lie groups.Gives the classical standard results with proof related to the so-called orbit method.Pr
39#
發(fā)表于 2025-3-28 07:36:08 | 只看該作者
40#
發(fā)表于 2025-3-28 12:14:37 | 只看該作者
Harmonic Analysis on Exponential Solvable Lie Groups978-4-431-55288-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济源市| 西盟| 富顺县| 敦化市| 邹城市| 芮城县| 阿鲁科尔沁旗| 宜丰县| 怀集县| 高阳县| 镶黄旗| 寻乌县| 潍坊市| 萝北县| 临海市| 黎川县| 巨鹿县| 本溪| 西安市| 华坪县| 桂平市| 昭通市| 黑山县| 石景山区| 博湖县| 衡阳市| 三门县| 安多县| 怀远县| 道孚县| 铜陵市| 独山县| 宜丰县| 蒲江县| 昌宁县| 大荔县| 高雄市| 霍林郭勒市| 绍兴市| 石渠县| 钦州市|