找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis on Exponential Solvable Lie Groups; Hidenori Fujiwara,Jean Ludwig Book 2015 Springer Japan 2015 Exponential solvable Lie

[復(fù)制鏈接]
樓主: mortality
31#
發(fā)表于 2025-3-26 22:18:49 | 只看該作者
32#
發(fā)表于 2025-3-27 02:10:39 | 只看該作者
to provide incentives to do so. I survey several approaches to eliciting truthful information, in particular scoring rules, peer prediction methods and opinion polls, and discuss possible applications.
33#
發(fā)表于 2025-3-27 06:01:55 | 只看該作者
34#
發(fā)表于 2025-3-27 09:48:14 | 只看該作者
35#
發(fā)表于 2025-3-27 15:57:05 | 只看該作者
(oldsymbol{e}) -Central Elements,tent Lie group with Lie algebra .. Let us introduce .-central elements due to Corwin and Greenleaf [17]. Let . be a composition series of ideals of .. Let {. .}. be a Malcev basis of . according to this composition series, i.e. . and . its dual basis in .. We denote the coordinates of . by .. Then .
36#
發(fā)表于 2025-3-27 20:32:02 | 只看該作者
Frobenius Reciprocity,er the . .-vectors. Let .. When the function . is . ., . is called a . .-vector. We denote by . the space of the . .-vectors of .. {. .}. . being the approximate identity of . .(.) introduced in Proposition?. and chosen in ., we see that . for any .. As ., . is a dense subspace of . and . acts there
37#
發(fā)表于 2025-3-27 22:34:45 | 只看該作者
38#
發(fā)表于 2025-3-28 05:55:48 | 只看該作者
Hidenori Fujiwara,Jean LudwigExplains topics that have been actively studied in the non-commutative harmonic analysis of solvable Lie groups.Gives the classical standard results with proof related to the so-called orbit method.Pr
39#
發(fā)表于 2025-3-28 07:36:08 | 只看該作者
40#
發(fā)表于 2025-3-28 12:14:37 | 只看該作者
Harmonic Analysis on Exponential Solvable Lie Groups978-4-431-55288-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湄潭县| 龙南县| 五莲县| 平顶山市| 乌鲁木齐县| 朝阳区| 财经| 柏乡县| 明光市| 林州市| 怀安县| 镇沅| 留坝县| 桃江县| 来安县| 华亭县| 屏南县| 大荔县| 余江县| 双柏县| 垣曲县| 海阳市| 宜川县| 利津县| 西充县| 休宁县| 自治县| 同江市| 义马市| 新和县| 台中市| 顺义区| 高雄县| 大厂| 镇宁| 太原市| 屯留县| 漯河市| 宿州市| 莱州市| 庆安县|