找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis of Spherical Functions on Real Reductive Groups; Ramesh Gangolli,Veeravalli S. Varadarajan Book 1988 Springer-Verlag Ber

[復(fù)制鏈接]
查看: 50123|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:25:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups
編輯Ramesh Gangolli,Veeravalli S. Varadarajan
視頻videohttp://file.papertrans.cn/425/424277/424277.mp4
叢書(shū)名稱(chēng)Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
圖書(shū)封面Titlebook: Harmonic Analysis of Spherical Functions on Real Reductive Groups;  Ramesh Gangolli,Veeravalli S. Varadarajan Book 1988 Springer-Verlag Ber
描述Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930‘s. However its full development did not begin until the 1950‘s when Gel‘fand and Harish- Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra‘s theory of spherical functions was essentially complete in the late 1950‘s, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on
出版日期Book 1988
關(guān)鍵詞Fourier analysis; Potential; differential equation; differential operator; function space; functional equ
版次1
doihttps://doi.org/10.1007/978-3-642-72956-0
isbn_softcover978-3-642-72958-4
isbn_ebook978-3-642-72956-0
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups影響因子(影響力)




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups被引頻次




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups被引頻次學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups年度引用




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups年度引用學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups讀者反饋




書(shū)目名稱(chēng)Harmonic Analysis of Spherical Functions on Real Reductive Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:55:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:11:06 | 只看該作者
Ramesh Gangolli,Veeravalli S. VaradarajanAusgangspunkte für eine Beurteilung aktueller Infrastrukturen sind nicht nur bei den vorhandenen Auszeichnungssprachen vorhanden. Daneben oder z.T. darauf aufbauend existieren auch ?funktionale Elemente“, die für einen letztlich umfassenden überblick über die technischen Gegebenheiten von Online-M?rkten ebenfalls zun?chst untersucht werden müssen.
地板
發(fā)表于 2025-3-22 08:32:32 | 只看該作者
5#
發(fā)表于 2025-3-22 11:59:30 | 只看該作者
Asymptotic Behaviour of Elementary Spherical Functions,This chapter, as well as the next one, will be devoted to the formulation and proofs of the main theorems of the L. harmonic analysis of spherical functions. At the center of the theory is the Harish-Chandra transform (see §3.3) . where
6#
發(fā)表于 2025-3-22 16:33:55 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folgehttp://image.papertrans.cn/h/image/424277.jpg
7#
發(fā)表于 2025-3-22 19:12:36 | 只看該作者
Ramesh Gangolli,Veeravalli S. Varadarajan Jede Ebene ?versteht“ dabei auf Grund einer semantischen Verwertbarkeit zumindest das, was von der unmittelbar n?chsth?heren Ebene kommuniziert wird und gibt an nachfolgende Ebenen Daten weiter, die dort ?verstanden“ werden k?nnen.
8#
發(fā)表于 2025-3-22 21:49:49 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:22 | 只看該作者
10#
發(fā)表于 2025-3-23 09:27:28 | 只看該作者
-Theory of Harish-Chandra Transform. Fourier Analysis on the Spaces ,(,),the Harish-Chandra transforms of functions in a certain family of spaces .(.), 0 < . < 2. For . = 2, . is merely the space .(.), while for . = 1, we get the L.-analogue of .(.). The end result will be a complete characterization of the algebra of transforms of the spaces.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青州市| 开阳县| 察哈| 朝阳区| 边坝县| 丰县| 老河口市| 顺平县| 新蔡县| 定陶县| 临夏市| 军事| 榆林市| 克拉玛依市| 潼关县| 都兰县| 图木舒克市| 敦化市| 安福县| 新乡市| 南丰县| 长治市| 平定县| 梁平县| 武义县| 游戏| 景泰县| 盐边县| 佳木斯市| 台中县| 内江市| 东丽区| 浦城县| 齐齐哈尔市| 察哈| 潮安县| 抚顺市| 龙江县| 新平| 东城区| 瓦房店市|