找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis in Hypercomplex Systems; Yu. M. Berezansky,A. A. Kalyuzhnyi Book 1998 Springer Science+Business Media B.V. 1998 Fourier

[復制鏈接]
樓主: 板條箱
11#
發(fā)表于 2025-3-23 11:08:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:31:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:12:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:42:02 | 只看該作者
Introduction,rmonic analysis can be generalized by replacing exponential functions ..(.,. ∈ ?.) by some family of complex-valued functions .(., .) which inherit the following property of the indicated exponential functions: The exponential functions are connected with the family of ordinary translation operators
15#
發(fā)表于 2025-3-24 02:27:41 | 只看該作者
General Theory of Hypercomplex Systems, (commutative) hypercomplex system with continuous basis and developed harmonic analysis for such systems. Each hypercomplex system is a Banach *-algebra of functions on a locally compact space (the basis of a hypercomplex system). It generalizes the concept of hypercomplex system with finite basis
16#
發(fā)表于 2025-3-24 08:40:14 | 只看該作者
Examples of Hypercomplex Systems,tence of a Fourier-type transformation satisfying the Plancherel theorem and the inversion formula. These generalized translation operators often possess additional properties which enable one to construct a hypercomplex system. In view of the existence of developed harmonic analysis for hypercomple
17#
發(fā)表于 2025-3-24 13:11:35 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:08 | 只看該作者
ecifications of multiagent system. The benefits of formal methods become clearer when we recognize the cost of developing a defective multiagent system. This paper seeks to introduce engineers to the possibilities of applying formal methods for multiagent systems. To this end, it discusses selected
19#
發(fā)表于 2025-3-24 19:35:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
濮阳市| 苍溪县| 呼图壁县| 焦作市| 东安县| 克东县| 剑河县| 平潭县| 封丘县| 都昌县| 同江市| SHOW| 阜宁县| 神池县| 湄潭县| 翁牛特旗| 杨浦区| 济南市| 遂溪县| 紫金县| 九龙坡区| 托克托县| 潮州市| 海原县| 达孜县| 曲水县| 蒙山县| 苏尼特右旗| 扶余县| 南通市| 寿宁县| 凤台县| 左云县| 临沧市| 罗山县| 黔江区| 岳阳市| 罗定市| 黎川县| 万安县| 阿图什市|