找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis in Hypercomplex Systems; Yu. M. Berezansky,A. A. Kalyuzhnyi Book 1998 Springer Science+Business Media B.V. 1998 Fourier

[復(fù)制鏈接]
樓主: 板條箱
11#
發(fā)表于 2025-3-23 11:08:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:31:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:12:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:42:02 | 只看該作者
Introduction,rmonic analysis can be generalized by replacing exponential functions ..(.,. ∈ ?.) by some family of complex-valued functions .(., .) which inherit the following property of the indicated exponential functions: The exponential functions are connected with the family of ordinary translation operators
15#
發(fā)表于 2025-3-24 02:27:41 | 只看該作者
General Theory of Hypercomplex Systems, (commutative) hypercomplex system with continuous basis and developed harmonic analysis for such systems. Each hypercomplex system is a Banach *-algebra of functions on a locally compact space (the basis of a hypercomplex system). It generalizes the concept of hypercomplex system with finite basis
16#
發(fā)表于 2025-3-24 08:40:14 | 只看該作者
Examples of Hypercomplex Systems,tence of a Fourier-type transformation satisfying the Plancherel theorem and the inversion formula. These generalized translation operators often possess additional properties which enable one to construct a hypercomplex system. In view of the existence of developed harmonic analysis for hypercomple
17#
發(fā)表于 2025-3-24 13:11:35 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:08 | 只看該作者
ecifications of multiagent system. The benefits of formal methods become clearer when we recognize the cost of developing a defective multiagent system. This paper seeks to introduce engineers to the possibilities of applying formal methods for multiagent systems. To this end, it discusses selected
19#
發(fā)表于 2025-3-24 19:35:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高要市| 东辽县| 平南县| 百色市| 平谷区| 株洲市| 独山县| 砀山县| 上蔡县| 蛟河市| 微博| 乌海市| 蚌埠市| 新余市| 龙南县| 温泉县| 平利县| 阳朔县| 开平市| 镇巴县| 宜州市| 江陵县| 新密市| 嘉荫县| 临夏市| 从化市| 周口市| 河北省| 淮阳县| 姚安县| 鄱阳县| 库车县| 措勤县| 交口县| 水城县| 酒泉市| 临西县| 巢湖市| 开鲁县| 泽库县| 西藏|