找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis and Representations of Semisimple Lie Groups; Lectures given at th J. A. Wolf,M. Cahen,M. Wilde Book 1980 D. Reidel Publi

[復(fù)制鏈接]
樓主: ODDS
41#
發(fā)表于 2025-3-28 16:49:15 | 只看該作者
Finite-Dimensional Representation Theoryl Theorem for compact semisimple groups in Section 15. Finally, in Section 16, we specialize to the decomposition of the . space of a compact symmetric space and give Cartan’s highest weight theory for class one representations.
42#
發(fā)表于 2025-3-28 22:39:43 | 只看該作者
43#
發(fā)表于 2025-3-29 02:26:25 | 只看該作者
General Backgroundions: (1) What sort of regularity properties should . possess for the decomposition to make any sense at all?; (2) In what sense does the series converge? These questions (or their analogues) will persist throughout our investigations.
44#
發(fā)表于 2025-3-29 04:56:00 | 只看該作者
Infinite-Dimensional Representationsct subgroup . ? G has multiplicity .(к, π|.) ≤ dim к. This yields up the infinitesimal character χ.: .(g)→ ? and the distribution character .: C.(G) → ?, and consequently the differential equations. for .which are the starting point for serious harmonic analysis on ..
45#
發(fā)表于 2025-3-29 10:32:57 | 只看該作者
Nonlinear Representations of Lie Groups and ApplicationsStill, what more specific motivations do we have to study nonlinear representations of Lie groups in linear spaces? We may of course reverse the argument and ask why in the past did we study mainly linear representations of a nonlinear object?!
46#
發(fā)表于 2025-3-29 14:01:29 | 只看該作者
47#
發(fā)表于 2025-3-29 18:41:56 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:47:36 | 只看該作者
Infinite-Dimensional Representations.. The basic fact for an irreducible unitary representation . of . on a Hilbert space ?, is that every irreducible representation к of a maximal compact subgroup . ? G has multiplicity .(к, π|.) ≤ dim к. This yields up the infinitesimal character χ.: .(g)→ ? and the distribution character .: C.(G) →
50#
發(fā)表于 2025-3-30 05:56:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏津县| 广昌县| 连江县| 呼图壁县| 西乌珠穆沁旗| 泗水县| 都昌县| 盘山县| 伊吾县| 交城县| 怀化市| 渑池县| 平湖市| 安徽省| 普宁市| 南康市| 克拉玛依市| 丽江市| 繁峙县| 财经| 台中县| 湖口县| 建德市| 长葛市| 大厂| 弥渡县| 修武县| 新竹市| 六枝特区| 疏附县| 双流县| 金湖县| 崇信县| 永顺县| 平江县| 沁水县| 潼南县| 麻阳| 临猗县| 荣昌县| 昌都县|