找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis and Partial Differential Equations; Michael Ruzhansky,Jens Wirth Book 2022 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
查看: 23430|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:54:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Harmonic Analysis and Partial Differential Equations
編輯Michael Ruzhansky,Jens Wirth
視頻videohttp://file.papertrans.cn/425/424268/424268.mp4
概述It allows expert researchers as well as postgraduate students to grasp new ideas.Provides original contributions from leading experts.It focusses on the interaction of different fields of mathematics
叢書名稱Trends in Mathematics
圖書封面Titlebook: Harmonic Analysis and Partial Differential Equations;  Michael Ruzhansky,Jens Wirth Book 2022 The Editor(s) (if applicable) and The Author(
描述This book collects papers related to the session “Harmonic Analysis and Partial Differential Equations” held at the 13th International ISAAC Congress in Ghent and provides an overview on recent trends and advances in the interplay between harmonic analysis and partial differential equations. The book can serve as useful source of information for mathematicians, scientists and engineers..The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area..
出版日期Book 2022
關(guān)鍵詞Partial Differential Equations; Harmonic Analysis; Analysis on Lie Groups; Functional Inequalities; Evol
版次1
doihttps://doi.org/10.1007/978-3-031-24311-0
isbn_softcover978-3-031-24313-4
isbn_ebook978-3-031-24311-0Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Harmonic Analysis and Partial Differential Equations影響因子(影響力)




書目名稱Harmonic Analysis and Partial Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Harmonic Analysis and Partial Differential Equations網(wǎng)絡(luò)公開度




書目名稱Harmonic Analysis and Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Harmonic Analysis and Partial Differential Equations被引頻次




書目名稱Harmonic Analysis and Partial Differential Equations被引頻次學(xué)科排名




書目名稱Harmonic Analysis and Partial Differential Equations年度引用




書目名稱Harmonic Analysis and Partial Differential Equations年度引用學(xué)科排名




書目名稱Harmonic Analysis and Partial Differential Equations讀者反饋




書目名稱Harmonic Analysis and Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:02 | 只看該作者
Local Well-Posedness for the Scale-Critical Semilinear Heat Equation with a Weighted Gradient Term,The purpose of this paper is to prove local well-posedness for the Cauchy problem of the scale-critical semilinear heat equation with a weighted gradient term in the framework of weighted Lebesgue spaces and weighted Sobolev spaces.
板凳
發(fā)表于 2025-3-22 01:45:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:03:20 | 只看該作者
New Characterizations of Harmonic Hardy Spaces,We present new equivalent descriptions of the harmonic Hardy spaces in the unit disc and in the upper half plane. Such descriptions are found as applications of a generalized Hadamard operator of a standard function kernel.
5#
發(fā)表于 2025-3-22 12:06:08 | 只看該作者
On the Determination of a Coefficient of an Elliptic Equation via Partial Boundary Measurement,We consider an inverse problem to identify coefficient of elliptic equation via partial boundary measurement when the given domain is a rectangle and the coefficient depends only on one variable. We prove unique identifiability and provide reconstruction procedure in this case using classical results of the inverse Sturm–Liouville theory.
6#
發(fā)表于 2025-3-22 16:28:53 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:07 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/h/image/424268.jpg
8#
發(fā)表于 2025-3-22 22:41:57 | 只看該作者
9#
發(fā)表于 2025-3-23 02:13:03 | 只看該作者
Harmonic Analysis and Partial Differential Equations978-3-031-24311-0Series ISSN 2297-0215 Series E-ISSN 2297-024X
10#
發(fā)表于 2025-3-23 07:04:03 | 只看該作者
https://doi.org/10.1007/978-3-031-24311-0Partial Differential Equations; Harmonic Analysis; Analysis on Lie Groups; Functional Inequalities; Evol
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同仁县| 瑞金市| 中方县| 容城县| 纳雍县| 黄山市| 博兴县| 壶关县| 聊城市| 石狮市| 肃北| 雷山县| 余姚市| 迁西县| 阳高县| 平罗县| 新沂市| 龙门县| 盘锦市| 德庆县| 东乡族自治县| 博白县| 龙里县| 靖边县| 曲阜市| 什邡市| 耿马| 色达县| 玉门市| 丰原市| 精河县| 徐闻县| 光山县| 新和县| 平罗县| 宝丰县| 苏尼特右旗| 明光市| 攀枝花市| 绥滨县| 皮山县|