找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis and Boundary Value Problems in the Complex Domain; Mkhitar M. Djrbashian Book 1993 Springer Basel AG 1993 Boundary value

[復(fù)制鏈接]
樓主: sprawl
31#
發(fā)表于 2025-3-26 23:34:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:35:38 | 只看該作者
33#
發(fā)表于 2025-3-27 09:11:27 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:41 | 只看該作者
Harmonic Analysis and Boundary Value Problems in the Complex Domain978-3-0348-8549-2Series ISSN 0255-0156 Series E-ISSN 2296-4878
35#
發(fā)表于 2025-3-27 16:05:37 | 只看該作者
36#
發(fā)表于 2025-3-27 20:45:31 | 只看該作者
Some estimates in Banach spaces of analytic functions,The series of lemmas and theorems proved in this chapter establishes some estimates of norms in different weighted spaces of functions analytic in a half-plane and also in different weighted spaces of entire functions of exponential type. Later chapters of the book are based on these results and the results of Chapters 1 and 2.
37#
發(fā)表于 2025-3-27 23:13:44 | 只看該作者
38#
發(fā)表于 2025-3-28 02:53:31 | 只看該作者
39#
發(fā)表于 2025-3-28 09:31:06 | 只看該作者
Interpolation series expansions in spaces,of entire functions,In this chapter we establish interpolation series expansions in the Banach spaces.of entire functions Φ(.) of arbitrary natural order . ≥ 1 and of type ≤σ, satisfying the condition., where it is assumed, as always, that..
40#
發(fā)表于 2025-3-28 14:01:09 | 只看該作者
Further results. Wiener-Paley type theorems,ry of parametric representations of various classes of entire and analytic functions restricted by additional conditions of weighted integrability on suitable systems of rays. The main results of this chapter will be used later on, but nevertheless, we present them without proofs. The proofs can be found in M. M. Djrbashian’s monograph [5].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松溪县| 廉江市| 海阳市| 镇平县| 随州市| 崇义县| 志丹县| 任丘市| 宁陵县| 清河县| 曲周县| 修水县| 巩留县| 称多县| 河曲县| 新化县| 红河县| 濉溪县| 繁峙县| 大名县| 竹北市| 盘山县| 麟游县| 囊谦县| 墨竹工卡县| 临泽县| 铜山县| 巴东县| 桃源县| 宜宾县| 孙吴县| 抚松县| 兴业县| 任丘市| 亚东县| 册亨县| 定日县| 长汀县| 家居| 古浪县| 宝鸡市|