找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis; Henry Helson Book 2010Latest edition Hindustan Book Agency (India) 2010

[復(fù)制鏈接]
樓主: 休耕地
21#
發(fā)表于 2025-3-25 04:53:36 | 只看該作者
The Fourier Integral,The Fourier integral was introduced in Sections 2 and 3 of Chapter 1, and some results were proved analogous to those already known for Fourier series. Now the Fourier integral is our subject. First the things we know will be summarized.
22#
發(fā)表于 2025-3-25 09:08:23 | 只看該作者
Hardy Spaces,For 1 ≤ . ≤ ∞, .(.) is the subspace of .(.) consisting of . such that .(.) = 0 for all . < 0. This subspace is closed in .(.), and *-closed if . > 1 (when .(.) is a dual space). The functions of .(.) have Fourier series.. Thus the harmonic extension. is actually analytic.
23#
發(fā)表于 2025-3-25 13:52:08 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:23 | 只看該作者
25#
發(fā)表于 2025-3-25 21:59:35 | 只看該作者
Hindustan Book Agency (India) 2010
26#
發(fā)表于 2025-3-26 02:59:42 | 只看該作者
27#
發(fā)表于 2025-3-26 07:48:32 | 只看該作者
Fourier Series and Integrals,we replace Lebesgue measure . on the interval (0, 2.) by .(.) = ./2.. We shall generally omit the limits of integration when the measure is .; they are always 0 and 2., or another interval of the same length.
28#
發(fā)表于 2025-3-26 11:11:57 | 只看該作者
Translation,e Fourier transform to multiplication by exponentials. Thus much of Chapter 4 was about such subspaces. The first objective of this chapter is to characterize the closed subspaces of .(.) invariant under all translations, or under translations to the right. These results are analogous to theorems of Chapter 4 on the circle.
29#
發(fā)表于 2025-3-26 16:05:33 | 只看該作者
30#
發(fā)表于 2025-3-26 20:53:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
八宿县| 宜春市| 东丰县| 寻乌县| 梓潼县| 洪泽县| 司法| 肇庆市| 陆河县| 夹江县| 嫩江县| 城固县| 郎溪县| 罗平县| 偃师市| 叶城县| 扬州市| 南充市| 古浪县| 双辽市| 朝阳县| 确山县| 宁夏| 澄城县| 东辽县| 浙江省| 鄂伦春自治旗| 饶河县| 乌什县| 秦皇岛市| 六枝特区| 贺兰县| 榆树市| 黄山市| 紫金县| 桐柏县| 来凤县| 平邑县| 兴山县| 衢州市| 镶黄旗|