找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis; Henry Helson Book 2010Latest edition Hindustan Book Agency (India) 2010

[復(fù)制鏈接]
樓主: 休耕地
21#
發(fā)表于 2025-3-25 04:53:36 | 只看該作者
The Fourier Integral,The Fourier integral was introduced in Sections 2 and 3 of Chapter 1, and some results were proved analogous to those already known for Fourier series. Now the Fourier integral is our subject. First the things we know will be summarized.
22#
發(fā)表于 2025-3-25 09:08:23 | 只看該作者
Hardy Spaces,For 1 ≤ . ≤ ∞, .(.) is the subspace of .(.) consisting of . such that .(.) = 0 for all . < 0. This subspace is closed in .(.), and *-closed if . > 1 (when .(.) is a dual space). The functions of .(.) have Fourier series.. Thus the harmonic extension. is actually analytic.
23#
發(fā)表于 2025-3-25 13:52:08 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:23 | 只看該作者
25#
發(fā)表于 2025-3-25 21:59:35 | 只看該作者
Hindustan Book Agency (India) 2010
26#
發(fā)表于 2025-3-26 02:59:42 | 只看該作者
27#
發(fā)表于 2025-3-26 07:48:32 | 只看該作者
Fourier Series and Integrals,we replace Lebesgue measure . on the interval (0, 2.) by .(.) = ./2.. We shall generally omit the limits of integration when the measure is .; they are always 0 and 2., or another interval of the same length.
28#
發(fā)表于 2025-3-26 11:11:57 | 只看該作者
Translation,e Fourier transform to multiplication by exponentials. Thus much of Chapter 4 was about such subspaces. The first objective of this chapter is to characterize the closed subspaces of .(.) invariant under all translations, or under translations to the right. These results are analogous to theorems of Chapter 4 on the circle.
29#
發(fā)表于 2025-3-26 16:05:33 | 只看該作者
30#
發(fā)表于 2025-3-26 20:53:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洮南市| 宁晋县| 隆化县| 边坝县| 襄汾县| 江安县| 龙泉市| 龙川县| 濉溪县| 金阳县| 台中县| 阜阳市| 察隅县| 苍山县| 绥江县| 秦皇岛市| 北碚区| 葵青区| 如东县| 枝江市| 扎囊县| 天津市| 永新县| 义马市| 陆良县| 固原市| 松桃| 城步| 石河子市| 江阴市| 湟中县| 广平县| 阜平县| 东城区| 化德县| 长治市| 天镇县| 体育| 弥渡县| 鹤庆县| 资兴市|