找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hardware-Aware Probabilistic Machine Learning Models; Learning, Inference Laura Isabel Galindez Olascoaga,Wannes Meert,Maria Book 2021 The

[復(fù)制鏈接]
查看: 49583|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:02:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models
副標(biāo)題Learning, Inference
編輯Laura Isabel Galindez Olascoaga,Wannes Meert,Maria
視頻videohttp://file.papertrans.cn/425/424219/424219.mp4
概述Introduces a new, systematic approach for the realization of hardware-awareness with probabilistic models.Enables readers to accommodate various systems and applications, as demonstrated with multiple
圖書(shū)封面Titlebook: Hardware-Aware Probabilistic Machine Learning Models; Learning, Inference  Laura Isabel Galindez Olascoaga,Wannes Meert,Maria Book 2021 The
描述.This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. ..The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover...The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples sh
出版日期Book 2021
關(guān)鍵詞Machine Learning; Deep Learning; Deep Neural Networks; extreme-edge computing; Hardware-Aware Probabilis
版次1
doihttps://doi.org/10.1007/978-3-030-74042-9
isbn_softcover978-3-030-74044-3
isbn_ebook978-3-030-74042-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models影響因子(影響力)




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models被引頻次




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models被引頻次學(xué)科排名




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models年度引用




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models年度引用學(xué)科排名




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models讀者反饋




書(shū)目名稱Hardware-Aware Probabilistic Machine Learning Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:35:06 | 只看該作者
Background,how they address some of the tractable inference limitations of Bayesian Networks and other Probabilistic Graphical Models. The embedded sensing pipeline is introduced towards the end of this chapter as a way to describe the properties of the devices considered throughout this book.
板凳
發(fā)表于 2025-3-22 01:54:09 | 只看該作者
ious systems and applications, as demonstrated with multiple.This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumpti
地板
發(fā)表于 2025-3-22 04:55:10 | 只看該作者
Laura Isabel Galindez Olascoaga,Wannes Meert,Marian Verhelsttheir ideas, inherits some of their problems but adds little new. What is new in ToMism in fact makes matters worse by profoundly intellectualizing social interactions. We find that it inherits and tries to solve the Cartesian ‘problem of other minds’. Not surprisingly, it fails to solve this unsolvable problem.
5#
發(fā)表于 2025-3-22 10:27:38 | 只看該作者
6#
發(fā)表于 2025-3-22 16:57:24 | 只看該作者
7#
發(fā)表于 2025-3-22 17:23:49 | 只看該作者
ty, together with an engagement with sociological, psychoanalytic and phenomenological reflections on shame as a racial affect, a critique of white interiority considers alternative frames through which white anti-racist subjection might be imagined.
8#
發(fā)表于 2025-3-23 00:46:10 | 只看該作者
9#
發(fā)表于 2025-3-23 05:00:26 | 只看該作者
Hardware-Aware Bayesian Networks for Sensor Front-End Quality Scaling,o-optimal hardware-cost versus accuracy trade-off under a variety of conditions. The proposed models and strategies are finally evaluated empirically on a variety of publicly available machine learning benchmarking datasets.
10#
發(fā)表于 2025-3-23 06:15:06 | 只看該作者
Run-Time Strategies,-Pareto performance and also remaining robust to missing features from failing sensors. The proposed strategy is empirically evaluated on a publicly available Human Activity Recognition dataset, and is compared to the static approaches discussed in the previous two chapters, showing superior performance and robustness in dynamic scenarios.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定南县| 将乐县| 余庆县| 赞皇县| 望都县| 石渠县| 绥芬河市| 临夏市| 巴彦淖尔市| 武清区| 通许县| 孝义市| 连州市| 观塘区| 饶河县| 三台县| 车致| 龙游县| 阳曲县| 淮安市| 洪洞县| 内乡县| 崇仁县| 满洲里市| 汝阳县| 肥东县| 太保市| 祁东县| 平乐县| 和龙市| 平陆县| 密云县| 万年县| 丁青县| 桃源县| 苗栗县| 东台市| 绥宁县| 灵丘县| 望江县| 荔浦县|