找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of the Mathematics of the Arts and Sciences; Bharath Sriraman Reference work 2021 Springer Nature Switzerland AG 2021 Mathematics

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:51:19 | 只看該作者
Geometric Strategies in Creating Origami Paper Lampshades: Folding Miura-ori, Yoshimura, and Waterboign of origami paper lampshades is largely based on origami design, it also presents new challenges due to its specific set of design constraints as a new genre of functional art. This chapter intends to address this specific set of the design constraints through understanding the underlying mathema
42#
發(fā)表于 2025-3-28 22:32:19 | 只看該作者
43#
發(fā)表于 2025-3-29 02:21:13 | 只看該作者
Art and Science of Ropeo main types of rope, laid rope and braided rope, where the former one is in focus in this chapter. Mathematical and physical properties of rope and how to adapt these properties when making rope are discussed. The focus of these properties lies on those that fulfill the requirements put on rope mad
44#
發(fā)表于 2025-3-29 04:56:46 | 只看該作者
A Survey of Cellular Automata in Fiber Artsng cellular automata. We review some of the types of cellular automata, including elementary cellular automata, the Game of Life and “l(fā)ifelike” cellular automata, and stranded cellular automata. We then provide a survey of many of the different ways that cellular automata have been used in fiber art
45#
發(fā)表于 2025-3-29 10:00:35 | 只看該作者
46#
發(fā)表于 2025-3-29 11:46:28 | 只看該作者
Mathematics and Art: Unifying Perspectiveshematical thinking and mathematical tools contribute to the process of creating art. Turning then to the manifestation of art within mathematics, we introduce ideas and constructions from mathematical graph theory that can be appreciated from an artistic perspective. Finally, we reflect on how the p
47#
發(fā)表于 2025-3-29 18:30:59 | 只看該作者
48#
發(fā)表于 2025-3-29 19:43:17 | 只看該作者
Bharath Sriraman,Kyeonghwa Leee), interactive walkthroughs of virtual shopping malls and amusement parks, and even interactive meeting places that will provide you with a 3D representation of yourself that you can inhabit from your computer.
49#
發(fā)表于 2025-3-30 01:31:55 | 只看該作者
A Survey of Cellular Automata in Fiber Artss. This includes both depictions of well-known patterns produced by cellular automata and also cellular automata that were specifically designed or specifically chosen for their suitability in fiber media.
50#
發(fā)表于 2025-3-30 06:28:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍山县| 洛川县| 库伦旗| 塘沽区| 宁乡县| 健康| 巫山县| 石泉县| 桐庐县| 横山县| 临汾市| 长葛市| 扎鲁特旗| 密云县| 永德县| 清水河县| 武城县| 上栗县| 布尔津县| 鹿泉市| 邯郸市| 石景山区| 延长县| 旅游| 左云县| 桂林市| 武宁县| 双牌县| 通榆县| 定兴县| 定日县| 武汉市| 洪洞县| 安仁县| 临潭县| 清徐县| 渭源县| 峨山| 方正县| 墨脱县| 迁安市|