找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Variational Methods for Nonlinear Geometric Data; Philipp Grohs,Martin Holler,Andreas Weinmann Book 2020 Springer Nature Switz

[復(fù)制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 03:29:14 | 只看該作者
22#
發(fā)表于 2025-3-25 09:49:55 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:43 | 只看該作者
Lifting Methods for Manifold-Valued Variational Problemsr-dimensional space. The lifted models can then be efficiently solved to a global optimum, which allows to find approximate global minimizers of the original problem. Recently, these techniques have also been applied to problems with values in a manifold. We provide a review of such methods in a ref
24#
發(fā)表于 2025-3-25 17:36:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:30:08 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:55:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:29:28 | 只看該作者
Assignment Flowsos. They provide adaptive time-variant extensions of established discrete graphical models and a basis for the design and better mathematical understanding of hierarchical networks, using methods from information (differential) geometry, geometric numerical integration, statistical inference, optima
29#
發(fā)表于 2025-3-26 12:37:51 | 只看該作者
Geometric Methods on Low-Rank Matrix and Tensor Manifoldsix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explai
30#
發(fā)表于 2025-3-26 17:06:38 | 只看該作者
Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spacesc descriptors are means and PCs (principal components, the eigenorientations of covariance matrices). In 1963, T.W. Anderson derived his celebrated result of joint asymptotic normality of PCs under very general conditions. As means and PCs can also be defined geometrically, there have been various g
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌南县| 金川县| 和田县| 浮山县| 麻栗坡县| 田林县| 兴安县| 大石桥市| 广灵县| 岑溪市| SHOW| 东阳市| 琼海市| 昭苏县| 望江县| 伊宁市| 大洼县| 平邑县| 囊谦县| 正镶白旗| 鲁山县| 马公市| 大石桥市| 蛟河市| 建瓯市| 乐陵市| 黎川县| 沂南县| 武平县| 宁乡县| 浦北县| 濮阳县| 青冈县| 乌兰察布市| 达尔| 九寨沟县| 乌鲁木齐市| 宁强县| 册亨县| 那曲县| 通江县|