找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Variational Methods for Nonlinear Geometric Data; Philipp Grohs,Martin Holler,Andreas Weinmann Book 2020 Springer Nature Switz

[復(fù)制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 03:29:14 | 只看該作者
22#
發(fā)表于 2025-3-25 09:49:55 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:43 | 只看該作者
Lifting Methods for Manifold-Valued Variational Problemsr-dimensional space. The lifted models can then be efficiently solved to a global optimum, which allows to find approximate global minimizers of the original problem. Recently, these techniques have also been applied to problems with values in a manifold. We provide a review of such methods in a ref
24#
發(fā)表于 2025-3-25 17:36:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:30:08 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:55:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:29:28 | 只看該作者
Assignment Flowsos. They provide adaptive time-variant extensions of established discrete graphical models and a basis for the design and better mathematical understanding of hierarchical networks, using methods from information (differential) geometry, geometric numerical integration, statistical inference, optima
29#
發(fā)表于 2025-3-26 12:37:51 | 只看該作者
Geometric Methods on Low-Rank Matrix and Tensor Manifoldsix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explai
30#
發(fā)表于 2025-3-26 17:06:38 | 只看該作者
Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spacesc descriptors are means and PCs (principal components, the eigenorientations of covariance matrices). In 1963, T.W. Anderson derived his celebrated result of joint asymptotic normality of PCs under very general conditions. As means and PCs can also be defined geometrically, there have been various g
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
教育| 二连浩特市| 黔江区| 时尚| 翼城县| 开平市| 义马市| 黄龙县| 高邮市| 泸西县| 昭觉县| 九龙坡区| 朝阳县| 昭觉县| 清流县| 富阳市| 汉沽区| 五峰| 潞西市| 虞城县| 司法| 玉林市| 淮北市| 临沧市| 文水县| 西昌市| 壶关县| 贞丰县| 伊金霍洛旗| 安陆市| 萝北县| 理塘县| 从化市| 阳曲县| 凭祥市| 射洪县| 丰县| 博爱县| 阿合奇县| 崇义县| 中山市|