找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Variational Methods for Nonlinear Geometric Data; Philipp Grohs,Martin Holler,Andreas Weinmann Book 2020 Springer Nature Switz

[復(fù)制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 03:29:14 | 只看該作者
22#
發(fā)表于 2025-3-25 09:49:55 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:43 | 只看該作者
Lifting Methods for Manifold-Valued Variational Problemsr-dimensional space. The lifted models can then be efficiently solved to a global optimum, which allows to find approximate global minimizers of the original problem. Recently, these techniques have also been applied to problems with values in a manifold. We provide a review of such methods in a ref
24#
發(fā)表于 2025-3-25 17:36:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:30:08 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:55:20 | 只看該作者
28#
發(fā)表于 2025-3-26 10:29:28 | 只看該作者
Assignment Flowsos. They provide adaptive time-variant extensions of established discrete graphical models and a basis for the design and better mathematical understanding of hierarchical networks, using methods from information (differential) geometry, geometric numerical integration, statistical inference, optima
29#
發(fā)表于 2025-3-26 12:37:51 | 只看該作者
Geometric Methods on Low-Rank Matrix and Tensor Manifoldsix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explai
30#
發(fā)表于 2025-3-26 17:06:38 | 只看該作者
Statistical Methods Generalizing Principal Component Analysis to Non-Euclidean Spacesc descriptors are means and PCs (principal components, the eigenorientations of covariance matrices). In 1963, T.W. Anderson derived his celebrated result of joint asymptotic normality of PCs under very general conditions. As means and PCs can also be defined geometrically, there have been various g
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞阳县| 南投市| 临潭县| 海阳市| 阿坝| 岚皋县| 招远市| 萍乡市| 通河县| 美姑县| 阿拉尔市| 海林市| 松潘县| 湘潭县| 拜城县| 永寿县| 治县。| 卢氏县| 定襄县| 灵寿县| 松潘县| 上高县| 太原市| 万源市| 上蔡县| 密云县| 恩平市| 历史| 施秉县| 宿迁市| 富顺县| 乐亭县| 绥滨县| 莲花县| 盐亭县| 桂林市| 旬邑县| 剑河县| 五指山市| 南华县| 长沙县|