找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Set Theory; Matthew Foreman,Akihiro Kanamori Book 2010 Springer Science+Business Media B.V. 2010 Arithmetic.Combinatorics.Cont

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 06:58:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:52 | 只看該作者
Constructibility and Class Forcing,re turning to the most important technique in the subject, the technique of .. Armed with these ideas we then proceed to describe the solutions to the Solovay problems. We next discuss ., a concept which helps to explain the special role of 0. in this theory. We end by briefly describing some other applications.
24#
發(fā)表于 2025-3-25 19:12:34 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:51 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:00 | 只看該作者
Coherent Sequences, assumes that the corresponding .-sequence is coherent. Another emphasis of this chapter is on applications of the method of ordinal walks to more classical themes of set theory such as, for example, the Tree Property, Chang’s Conjecture, Souslin Hypothesis, Mahlo Hierarchy, etc. The chapter also includes a number of open problems.
27#
發(fā)表于 2025-3-26 04:36:42 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:14 | 只看該作者
Book 2010ient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proof
29#
發(fā)表于 2025-3-26 14:54:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
手游| 汾西县| 湾仔区| 吴堡县| 韩城市| 阳山县| 盐城市| 清镇市| 东城区| 友谊县| 金溪县| 定南县| 丽水市| 安平县| 孟连| 和田市| 普安县| 遂平县| 瑞金市| 民勤县| 大渡口区| 灵川县| 齐齐哈尔市| 白水县| 广宁县| 宁波市| 沁水县| 祥云县| 河北区| 怀宁县| 潞西市| 东光县| 东阳市| 永福县| 宾川县| 台北县| 榆树市| 莱阳市| 余江县| 永新县| 南和县|