找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Set Theory; Matthew Foreman,Akihiro Kanamori Book 2010 Springer Science+Business Media B.V. 2010 Arithmetic.Combinatorics.Cont

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 06:58:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:52 | 只看該作者
Constructibility and Class Forcing,re turning to the most important technique in the subject, the technique of .. Armed with these ideas we then proceed to describe the solutions to the Solovay problems. We next discuss ., a concept which helps to explain the special role of 0. in this theory. We end by briefly describing some other applications.
24#
發(fā)表于 2025-3-25 19:12:34 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:51 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:00 | 只看該作者
Coherent Sequences, assumes that the corresponding .-sequence is coherent. Another emphasis of this chapter is on applications of the method of ordinal walks to more classical themes of set theory such as, for example, the Tree Property, Chang’s Conjecture, Souslin Hypothesis, Mahlo Hierarchy, etc. The chapter also includes a number of open problems.
27#
發(fā)表于 2025-3-26 04:36:42 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:14 | 只看該作者
Book 2010ient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proof
29#
發(fā)表于 2025-3-26 14:54:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和平区| 达拉特旗| 永登县| 长沙市| 乐都县| 高邑县| 宁河县| 东兴市| 望城县| 海宁市| 根河市| 淅川县| 贺兰县| 公安县| 镇安县| 东丰县| 宜良县| 宁夏| 马公市| 大悟县| 恩平市| 南京市| 陕西省| 怀仁县| 水城县| 泾源县| 外汇| 静安区| 会昌县| 漯河市| 河东区| 油尖旺区| 宝鸡市| 宜宾县| 蓬溪县| 奉新县| 乳山市| 安吉县| 长治县| 疏勒县| 盘山县|