找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Set Theory; Matthew Foreman,Akihiro Kanamori Book 2010 Springer Science+Business Media B.V. 2010 Arithmetic.Combinatorics.Cont

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 06:58:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:52 | 只看該作者
Constructibility and Class Forcing,re turning to the most important technique in the subject, the technique of .. Armed with these ideas we then proceed to describe the solutions to the Solovay problems. We next discuss ., a concept which helps to explain the special role of 0. in this theory. We end by briefly describing some other applications.
24#
發(fā)表于 2025-3-25 19:12:34 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:51 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:00 | 只看該作者
Coherent Sequences, assumes that the corresponding .-sequence is coherent. Another emphasis of this chapter is on applications of the method of ordinal walks to more classical themes of set theory such as, for example, the Tree Property, Chang’s Conjecture, Souslin Hypothesis, Mahlo Hierarchy, etc. The chapter also includes a number of open problems.
27#
發(fā)表于 2025-3-26 04:36:42 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:14 | 只看該作者
Book 2010ient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proof
29#
發(fā)表于 2025-3-26 14:54:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高清| 蓬莱市| 托里县| 南溪县| 留坝县| 玉山县| 霞浦县| 五台县| 吴堡县| 中超| 黎平县| 萍乡市| 四子王旗| 洱源县| 泰来县| 辛集市| 红安县| 赫章县| 建水县| 原平市| 恩平市| 西安市| 留坝县| 米泉市| 宁海县| 德保县| 延庆县| 射阳县| 龙州县| 福泉市| 惠东县| 岳池县| 封开县| 黄冈市| 桐城市| 郁南县| 上杭县| 治县。| 武城县| 赣州市| 昌平区|