找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Set Theory; Matthew Foreman,Akihiro Kanamori Book 2010 Springer Science+Business Media B.V. 2010 Arithmetic.Combinatorics.Cont

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 06:58:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:52 | 只看該作者
Constructibility and Class Forcing,re turning to the most important technique in the subject, the technique of .. Armed with these ideas we then proceed to describe the solutions to the Solovay problems. We next discuss ., a concept which helps to explain the special role of 0. in this theory. We end by briefly describing some other applications.
24#
發(fā)表于 2025-3-25 19:12:34 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:51 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:00 | 只看該作者
Coherent Sequences, assumes that the corresponding .-sequence is coherent. Another emphasis of this chapter is on applications of the method of ordinal walks to more classical themes of set theory such as, for example, the Tree Property, Chang’s Conjecture, Souslin Hypothesis, Mahlo Hierarchy, etc. The chapter also includes a number of open problems.
27#
發(fā)表于 2025-3-26 04:36:42 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:14 | 只看該作者
Book 2010ient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proof
29#
發(fā)表于 2025-3-26 14:54:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涟水县| 响水县| 石嘴山市| 桃源县| 泰兴市| 东莞市| 太保市| 会东县| 大埔区| 普陀区| 海盐县| 若尔盖县| 修文县| 宁陕县| 广昌县| 武清区| 菏泽市| 马山县| 海兴县| 隆化县| 汨罗市| 漳平市| 常德市| 盈江县| 额尔古纳市| 开封市| 恩施市| 八宿县| 濮阳市| 平山县| 平陆县| 红桥区| 名山县| 叶城县| 专栏| 和平区| 康定县| 花莲市| 丹阳市| 凌云县| 宜都市|