找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Reinforcement Learning and Control; Kyriakos G. Vamvoudakis,Yan Wan,Derya Cansever Book 2021 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: charity
21#
發(fā)表于 2025-3-25 03:37:12 | 只看該作者
22#
發(fā)表于 2025-3-25 11:06:55 | 只看該作者
Fundamental Design Principles for Reinforcement Learning Algorithms While the surge in activity is creating excitement and opportunities, there is a gap in understanding of two basic principles that these algorithms need to satisfy for any successful application. One has to do with guarantees for convergence, and the other concerns the convergence rate. The vast ma
23#
發(fā)表于 2025-3-25 12:15:06 | 只看該作者
Mixed Density Methods for Approximate Dynamic Programmingods typically require a persistence of excitation (PE) condition for convergence. In this chapter, data-based methods will be discussed to soften the stringent PE condition by learning via simulation-based extrapolation. The development is based on the observation that, given a model of the system,
24#
發(fā)表于 2025-3-25 17:54:51 | 只看該作者
25#
發(fā)表于 2025-3-25 22:53:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:31:45 | 只看該作者
27#
發(fā)表于 2025-3-26 04:22:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:16:06 | 只看該作者
29#
發(fā)表于 2025-3-26 15:57:11 | 只看該作者
Reinforcement Learning-Based Model Reduction for Partial Differential Equations: Application to the ple, PDEs are used to model flexible beams and ropes?[., .], crowd dynamics?[., .], or fluid dynamics?[., .]. However, PDEs are infinite-dimensional systems, making them hard to solve in closed form, and computationally demanding to solve numerically. For instance, when using finite element methods
30#
發(fā)表于 2025-3-26 16:47:32 | 只看該作者
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms decision-making problems in machine learning. Most of the successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous driving, involve the participation of more than one single agent, which naturally fall into the realm of multi-agent RL (MARL), a domain with a relatively
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋州市| 海林市| 长治县| 邯郸县| 紫阳县| 樟树市| 冕宁县| 柯坪县| 通州市| 章丘市| 平顶山市| 东丽区| 台安县| 乌拉特后旗| 集安市| 汾阳市| 礼泉县| 信宜市| 蚌埠市| 布尔津县| 读书| 三亚市| 奉新县| 四川省| 绥宁县| 巩留县| 德江县| 曲阜市| 葵青区| 鸡西市| 南乐县| 宣武区| 海宁市| 昭苏县| 交口县| 吴江市| 桐柏县| 通山县| 共和县| 财经| 宣威市|