找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Reinforcement Learning and Control; Kyriakos G. Vamvoudakis,Yan Wan,Derya Cansever Book 2021 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: charity
21#
發(fā)表于 2025-3-25 03:37:12 | 只看該作者
22#
發(fā)表于 2025-3-25 11:06:55 | 只看該作者
Fundamental Design Principles for Reinforcement Learning Algorithms While the surge in activity is creating excitement and opportunities, there is a gap in understanding of two basic principles that these algorithms need to satisfy for any successful application. One has to do with guarantees for convergence, and the other concerns the convergence rate. The vast ma
23#
發(fā)表于 2025-3-25 12:15:06 | 只看該作者
Mixed Density Methods for Approximate Dynamic Programmingods typically require a persistence of excitation (PE) condition for convergence. In this chapter, data-based methods will be discussed to soften the stringent PE condition by learning via simulation-based extrapolation. The development is based on the observation that, given a model of the system,
24#
發(fā)表于 2025-3-25 17:54:51 | 只看該作者
25#
發(fā)表于 2025-3-25 22:53:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:31:45 | 只看該作者
27#
發(fā)表于 2025-3-26 04:22:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:16:06 | 只看該作者
29#
發(fā)表于 2025-3-26 15:57:11 | 只看該作者
Reinforcement Learning-Based Model Reduction for Partial Differential Equations: Application to the ple, PDEs are used to model flexible beams and ropes?[., .], crowd dynamics?[., .], or fluid dynamics?[., .]. However, PDEs are infinite-dimensional systems, making them hard to solve in closed form, and computationally demanding to solve numerically. For instance, when using finite element methods
30#
發(fā)表于 2025-3-26 16:47:32 | 只看該作者
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms decision-making problems in machine learning. Most of the successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous driving, involve the participation of more than one single agent, which naturally fall into the realm of multi-agent RL (MARL), a domain with a relatively
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九江县| 讷河市| 调兵山市| 伽师县| 高密市| 余庆县| 高邑县| 华池县| 孟连| 江川县| 浮梁县| 黄陵县| 青州市| 长武县| 盘锦市| 普定县| 柳林县| 饶平县| 海阳市| 库车县| 铜陵市| 马公市| 金华市| 农安县| 蒙山县| 开鲁县| 淮滨县| 米泉市| 阿拉善左旗| 大关县| 崇礼县| 淮南市| 来凤县| 曲水县| 津南区| 舟山市| 万安县| 昌乐县| 林州市| 革吉县| 玉树县|