找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Practical Immunohistochemistry; Frequently Asked Que Fan Lin,Jeffrey Prichard Book 20152nd edition Springer Science+Business Me

[復(fù)制鏈接]
樓主: Clinton
31#
發(fā)表于 2025-3-26 21:36:40 | 只看該作者
32#
發(fā)表于 2025-3-27 03:27:37 | 只看該作者
33#
發(fā)表于 2025-3-27 05:44:31 | 只看該作者
Ole Feldballe Rasmussen MSc, PhD,Lars Rudbeck MSc, PhDial Example Section 5.2. Introduction to Regular Fractional Factorial Designs Section 5.3. Basic Analysis of Regular Fractional Factorial Designs Following this introductory chapter on fractional factorials are six more chapters with additional details and examples. Regarding notation for factors, s
34#
發(fā)表于 2025-3-27 10:08:12 | 只看該作者
Traci DeGeerded three-factor and higher-order interactions are negligible, all of these designs provide unbiased estimates for main effects. These designs also devote at least .2 . 1 degrees of freedom to estimating combinations of two-factor interactions; some designs will even have two-factor interactions cle
35#
發(fā)表于 2025-3-27 16:08:51 | 只看該作者
36#
發(fā)表于 2025-3-27 20:46:53 | 只看該作者
Kerstin A. David PhD,Hartmut Juhl MD, PhDtitioners interested in expanding their repertoire of tools .Factorial designs enable researchers to experiment with many factors. The 50 published examples re-analyzed in this guide attest to the prolific use of two-level factorial designs. As a testimony to this universal applicability, the exampl
37#
發(fā)表于 2025-3-27 22:26:46 | 只看該作者
38#
發(fā)表于 2025-3-28 05:31:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:39 | 只看該作者
40#
發(fā)表于 2025-3-28 11:09:20 | 只看該作者
Jeffrey Prichard DO,David G. Hicks MD,M. Elizabeth H. Hammond MD35 show how it is possible to reduce and enlarge irregular figures. Let a – b – c – d – e (figure 134) be an irregular pentagon which has to be reduced in size so that a — b is now a – b′. All the other sides of the figure are to be reduced proportionately.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
即墨市| 曲麻莱县| 隆回县| 嘉善县| 新化县| 神池县| 青岛市| 西峡县| 富民县| 西乡县| 渭源县| 化隆| 金山区| 桃江县| 三台县| 东莞市| 涪陵区| 清丰县| 淄博市| 子洲县| 晋江市| 育儿| 江北区| 巢湖市| 禄劝| 上饶县| 成安县| 禹城市| 皋兰县| 翁源县| 喀喇沁旗| 自贡市| 凤山市| 德化县| 佛冈县| 旬邑县| 图木舒克市| 翁牛特旗| 林周县| 古田县| 东辽县|