找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Metric Fixed Point Theory; William A. Kirk,Brailey Sims Book 2001 Springer Science+Business Media Dordrecht 2001 banach spaces

[復(fù)制鏈接]
樓主: 生手
21#
發(fā)表于 2025-3-25 07:03:00 | 只看該作者
Classical Theory of Nonexpansive Mappings, an abstract metric space is all that is needed to define the concept. At the same time, the more interesting results seem to require some notion of topology; more specifically a topology which assures that closed metric balls are compact. This is not a serious limitation, however, because many spac
22#
發(fā)表于 2025-3-25 11:04:06 | 只看該作者
Geometrical Background of Metric Fixed Point Theory,ay key roles in metric fixed point problems. In this text we discuss the most basic of these geometrical properties. Since many fixed point results have a quantitative character, we place special emphasis on the scaling coefficients and functions corresponding to the properties considered. The mater
23#
發(fā)表于 2025-3-25 13:17:56 | 只看該作者
24#
發(fā)表于 2025-3-25 19:14:07 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:08 | 只看該作者
,Renormings of ?, and , , and Fixed Point Properties,ed point property. Geometric conditions such as uniform rotundity, uniform smoothness, or normal structure together with reflexivity are sufficient to imply the fixed point property. Each of these conditions also implies (or assumes in the last case) that the Banach space is reflexive.
26#
發(fā)表于 2025-3-26 00:41:13 | 只看該作者
Nonexpansive Mappings: Boundary/Inwardness Conditions and Local Theory,ngs, particularly to mappings satisfying local contractive and pseudocontractive assumptions. At the same time these conditions often enable one to relax the assumption that the mapping takes values in its own domain.
27#
發(fā)表于 2025-3-26 08:07:25 | 只看該作者
28#
發(fā)表于 2025-3-26 12:05:42 | 只看該作者
Introduction to Hyperconvex Spaces,.e. it is a non-expansive retract of any metric space in which it is isometrically embedded. The corresponding linear theory is well developed and associated with the names of Gleason, Goodner, Kelley and Nachbin (see for instance [19, 29, 42, 46]). The nonlinear theory is still developing. The rece
29#
發(fā)表于 2025-3-26 16:25:51 | 只看該作者
Fixed Points of Holomorphic Mappings: A Metric Approach,aid to be . in .. if it is Fréchet differentiable at each point of ... If .. and .. are domains in .. and .., respectively, then .(.., ..) will denote the family of all holomorphic mappings from .. into ...
30#
發(fā)表于 2025-3-26 17:33:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保康县| 台东市| 乌海市| 望奎县| 晋宁县| 襄垣县| 克东县| 屏边| 绍兴县| 通山县| 合水县| 福海县| 崇明县| 铁力市| 苍南县| 铁岭县| 葵青区| 寿光市| 松阳县| 华宁县| 丽江市| 正阳县| 平定县| 通江县| 德惠市| 古蔺县| 宿迁市| 大理市| 仙游县| 东山县| 岳阳县| 互助| 阿勒泰市| 白朗县| 屏南县| 临朐县| 石渠县| 古交市| 怀集县| 巴彦淖尔市| 东乌|