找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Mathematics; I.N. Bronshtein,K.A. Semendyayev,Heiner Mühlig Book 2015Latest edition Springer-Verlag Berlin Heidelberg 2015 Ana

[復(fù)制鏈接]
樓主: Clinton
41#
發(fā)表于 2025-3-28 16:08:13 | 只看該作者
Algebra and Discrete Mathematics,A . is the mental reflection of a fact, expressed as a sentence in a natural or artificial language. Every proposition is considered to be true or false.
42#
發(fā)表于 2025-3-28 19:47:10 | 只看該作者
43#
發(fā)表于 2025-3-29 02:04:10 | 只看該作者
Differential Equations,. is an equation, in which one or more variables, one or more functions of these variables, and also the derivatives of these functions with respect to these variables occur. The . of a differential equation is equal to the order of the highest occurring derivative.
44#
發(fā)表于 2025-3-29 04:49:49 | 只看該作者
Calculus of Variations,A very important problem of the differential calculus is to determine for which . values the given function .(.) has extreme values. The calculus of variations discusses the following problem: For which functions has a certain integral, whose integrand depends also on the unknown function and its derivatives, an extremum value?
45#
發(fā)表于 2025-3-29 07:56:37 | 只看該作者
Linear Integral Equations,An integral equation is an equation in which the unknown function appears under the integral sign. There is no universal method for solving integral equations. Solution methods and even the existence of a solution depend on the particular form of the integral equation.
46#
發(fā)表于 2025-3-29 14:46:56 | 只看該作者
47#
發(fā)表于 2025-3-29 16:58:12 | 只看該作者
48#
發(fā)表于 2025-3-29 22:40:39 | 只看該作者
Function Theory,Analogously to real functions, complex values can be assigned to complex values, i.e., to the value .?=?.?+?i . one can assign a complex number .?=?.?+?i ., where .?=?.(.) and .?=?.(.) are real functions of two real variables. This relation is denoted by .?=?.(.). The function .?=?.(.) is a mapping from the complex . plane to the complex . plane.
49#
發(fā)表于 2025-3-30 00:51:26 | 只看該作者
50#
發(fā)表于 2025-3-30 08:04:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 科尔| 凤冈县| 宁德市| 秭归县| 陆河县| 齐齐哈尔市| 合水县| 平定县| 博兴县| 威远县| 中超| 东丰县| 广丰县| 万荣县| 宁河县| 景洪市| 遂溪县| 朝阳市| 马公市| 大理市| 湖北省| 博客| 明溪县| 徐闻县| 石渠县| 睢宁县| 英山县| 台湾省| 德化县| 茂名市| 阳东县| 武穴市| 涪陵区| 沂南县| 蒙城县| 营口市| 富阳市| 灌云县| 汉中市| 贵德县|