找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of K-Theory; Eric M. Friedlander,Daniel R. Grayson Reference work 2005 Springer-Verlag Berlin Heidelberg 2005 Algebraic K-theory.

[復(fù)制鏈接]
樓主: 珍愛
21#
發(fā)表于 2025-3-25 05:56:45 | 只看該作者
22#
發(fā)表于 2025-3-25 09:47:36 | 只看該作者
23#
發(fā)表于 2025-3-25 13:56:00 | 只看該作者
Alexander B. Goncharovf jedenfalls schien erschüttert.. Dennoch hielt Adorno scheinbar konservativ an ihm als einer unverzichtbaren Grundkategorie philosophischer ?sthetik fest, um seine Aussagekraft an den seiner Ansicht nach fortgeschrittensten Entwicklungen der modernen Kunst zu überprüfen.
24#
發(fā)表于 2025-3-25 18:32:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:11 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:30 | 只看該作者
Deloopings in Algebraic ,-Theorye loop maps ([1]). In fact, . is best thought of as a functor not to topological spaces, but to the category of . ([2, 11]). Recall that a spectrum is a family of based topological spaces {..}., together with bonding maps .. : .. → .., which can be taken to be homeomorphisms. There is a great deal of value to this refinement of the functor ..
27#
發(fā)表于 2025-3-26 06:20:24 | 只看該作者
Witt Groupsl of generality is hard to find in the literature, like e.g. the “classical sublagrangian reduction” of Sect. 1.2.5. In Sect. 1.3, we specialize this classical material to the even more classical examples listed above: schemes, rings, fields. We include some motivations for the use of Witt groups.
28#
發(fā)表于 2025-3-26 09:28:35 | 只看該作者
29#
發(fā)表于 2025-3-26 14:39:12 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:44 | 只看該作者
Motivic Cohomology, ,-Theory and Topological Cyclic Homologyplications in arithmetic algebraic geometry (in particular, we do not discuss non-commutative rings), and our main focus lies on sheaf theoretic results for smooth schemes, which then lead to global results using local-to-global methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
休宁县| 梅河口市| 新平| 武汉市| 陆丰市| 大港区| 那曲县| 昌邑市| 株洲县| 蒙阴县| 凤冈县| 赫章县| 双牌县| 英德市| 白玉县| 武平县| 新邵县| 永新县| 泰兴市| 景谷| 雅安市| 思南县| 仙游县| 龙岩市| 密云县| 玉溪市| 松滋市| 洛隆县| 虞城县| 永靖县| 安图县| 正安县| 固阳县| 沂南县| 色达县| 河间市| 滕州市| 红安县| 德阳市| 天峻县| 灯塔市|